Всасывание продуктов распада белков. Судьба всосавшихся аминокислот. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Всасывание продуктов распада белков. Судьба всосавшихся аминокислот.



После всасывания эти продукты через воротную вену попадают в печень, где подвергаются обезвреживанию путем химического связывания с серной или глюкуроновой кислотой с образованием нетоксичных, так называемых парных, кислот (например, фенолсерная кислота или ска-токсилсерная кислота). Последние выделяются с мочой. Механизм обезвреживания этих продуктов изучен детально. В печени содержатся специфические ферменты – арилсульфотрансфераза и УДФ-глюкоронилтран-сфераза, катализирующие соответственно перенос остатка серной кислоты из ее связанной формы – 3'-фосфоаденозин-5'-фосфосульфата (ФАФС) и остатка глюкуроновой кислоты также из ее связанной формы – уридил-дифосфоглюкуроновой кислоты (УДФГК) на любой из указанных продуктов. всосавшиеся аминокислоты в первую очередь используются в качестве строительного материала для синтеза специфических тканевых белков, ферментов, гормонов и других биологически активных соединений. Некоторое количество аминокислот подвергается распаду с образованием конечных продуктов белкового обмена (СО2, Н2О и NH3) и освобождением энергии. Подсчитано, что в организме взрослого человека, находящегося на полноценной диете, образуется примерно 1200 кДж в сутки за счет окисления около 70 г аминокислот (помимо пищевых, также эндогенных аминокислот, образующихся при гидролизе тканевых белков). Это количество составляет около 10% от суточной потребности организма человека в энергии. Количество аминокислот, подвергающихся распаду, зависит как от характера питания, так и от физиологического состояния организма. Например, даже при полном голодании или частичном белковом голодании с мочой постоянно выделяется небольшое количество азотистых веществ, что свидетельствует о непрерывности процессов распада белков тела. Аминокислоты, как и белки, не накапливаются и не откладываются в тканях (наподобие жиров и гликогена), и у взрослого человека при нормальной обеспеченности пищевым белком поддерживается довольно постоянная концентрация аминокислот в крови.

 

ДЕЗАМИНИРОВАНИЕ. БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ. ПРИМЕРЫ.

Доказано существование 4 типов дезаминирования аминокислот (отщепление аминогруппы). Выделены соответствующие ферментные системы, катализирующие эти реакции, и идентифицированы продукты реакции. Во всех случаях NH2-группа аминокислоты освобождается в виде аммиака.

Помимо аммиака, продуктами дезаминирования являются жирные кислоты, оксикислоты и кетокислоты. Для животных тканей, растений и большинства аэробных микроорганизмов преобладающим типом реакций является окислительное дезаминирование аминокислот, за исключением гис-тидина, подвергающегося внутримолекулярному дезаминированию.

Рассмотрим более подробно механизм окислительного дезаминиро-вания аминокислот, протекающего в две стадии.

Первая стадия является ферментативной и завершается образованием неустойчивого промежуточного продукта (иминокислота), который на второй стадии спонтанно без участия фермента, но в присутствии воды распадается на аммиак и α-кетокислоту. Следует указать, что оксидазы аминокислот (L- и D-изомеров) являются сложными флавопротеинами, содержащими в качестве кофермента ФМН или ФАД, которые выполняют в этой реакции роль акцепторов двух электронов и протонов, отщепляющихся от аминокислоты. Оксидазы L-аминокислот могут содержать как ФМН, так и ФАД, а оксидазы D-аминокислот – только ФАД в качестве простетической группы. Схематически реакции окислительного дезами-нирования аминокислот с участием коферментов могут быть представлены в следующем виде:

Восстановленные флавиннуклеотиды оксидаз L- и D-аминокислот могут непосредственно окисляться молекулярным кислородом. При этом образуется перекись водорода, которая подвергается расщеплению под действием каталазы на воду и кислород.

Помимо перечисленных 4 типов дезаминирования аминокислот и ферментов, катализирующих эти превращения, в животных тканях и печени человека открыты также три специфических фермента (серин- и треонин-дегидратазы и цистатионин-γ-лиаза), катализирующих неокислительное дезаминирование соответственно серина, треонина и цистеина.

Конечными продуктами реакции являются пируват и α-кетобутират, аммиак и сероводород. Поскольку указанные ферменты требуют присутствия пиридоксальфосфата в качестве кофермента, реакция неокислительного дезаминирования, вероятнее всего, протекает с образованием шиффовых оснований как промежуточных метаболитов.

 


39.обезвреживание аммиака в организме. Орнитиновый цикл образования мочевины.

Аммиак – это высокотоксичное соединение, поэтому концентрация аммиака в организме должна сохраняться на низком уровне. Действительно, уровень аммиака в крови в норме не превышает 60 мкмоль/л. Аммиак должен подвергаться связыванию в тканях с образованием нетоксичных соединений, легко выделяющихся с мочой.

Один из путей связывания и обезвреживания аммиака в организме, в частности в мозге, сетчатке, почках, печени и мышцах, – это биосинтез глутамина (и, возможно, аспарагина). Глутамин и аспарагин выделяются с мочой в небольшом количестве. Было высказано предположение, что они выполняют скорее транспортную функцию переноса аммиака в нетоксичной форме. Ниже приводится химическая реакция синтеза глутамина, катализируемого глутаминсинтетазой.

Часть аммиака легко связывается с α-кетоглутаровой кислотой благодаря обратимости глутаматдегидрогеназной реакции. Если учесть связывание одной молекулы аммиака при синтезе глутамина, то нетрудно видеть, что в организме имеется хорошо функционирующая система, связывающая две молекулы аммиака:

Глутамин, кроме того, используется почками в качестве резервного источника аммиака (образуется из глутамина под действием глутаминазы), необходимого для нейтрализации кислых продуктов обмена при ацидозе и защищающего тем самым организм от потери с мочой используемых для этих целей ионов Na+.

Основным механизмом обезвреживания аммиака в организме является биосинтез мочевины. Последняя выводится с мочой в качестве главного конечного продукта белкового, соответственно аминокислотного, обмена.

Таким образом, весь цикл мочевинообразования может быть представлен следующим образом. На первом этапе синтезируется макроэргическое соединение карбамоилфосфат – метаболически активная форма аммиака, используемая в качестве исходного продукта для синтеза пиримидиновых нуклеотидов (соответственноДНК и РНК) и аргинина (соответственно белка и мочевины):

К настоящему времени открыты три разных пути синтеза карбамоил-фосфата de novo, катализируемые тремя разными ферментами. Первую необратимую реакцию катализирует регуляторный фермент – аммиакзави-симая карбамоилфосфатсинтетаза

На втором этапе цикла мочевинообразования происходит конденсация карбамоилфосфата и орнитина с образованием цитруллина; реакцию катализирует орнитин-карбамоилтрансфераза (формула в книге страница 352).

На следующей стадии цитруллин превращается в аргинин в результате двух последовательно протекающих реакций. Первая из них, энергозави-симая,– это конденсация цитруллина и аспарагиновой кислоты с образованием аргининосукцината (эту реакцию катализирует аргининосукцинат-синтетаза). Аргининосукцинат распадается в следующей реакции на аргинин и фумарат при участии другого фермента – аргининосукцинатлиазы. На последнем этапе аргинин расщепляется на мочевину и орнитин под действием аргиназы.

Рис. 12.5. Орнитиновый цикл синтеза мочевины в печени.

Из приведенной схемы процесса мочевинообразования нетрудно видеть, что один из атомов азота мочевиныимеет своим источником свободный аммиак (через карбамоилфосфат); второй атом азота поступает из ас-партата. Аммиак образуется главным образом в процессе глутаматде-гидрогеназной реакции. В процессе пополнения запасов аспартата участвуют три сопряженные реакции: сначала фумарат под действиемфумаразы присоединяет воду и превращается в малат, который окисляется при участии малатдегидрогеназыс образованием оксалоацетата; последний в реакции трансаминирования с глутаматом вновь образует аспартат.

Учитывая известные фактические данные о механизмах обезвреживания аммиака в организме, можно сделать следующее заключение. Часть аммиака используется на биосинтез аминокислот путем восстановительного аминирования α-кетокислот по механизму реакции трансаминирования. Аммиак связывается при биосинтезеглутамина и аспарагина. Некоторое количество аммиака выводится с мочой в виде аммонийных солей. В форме креатинина, который образуется из креатина и креатинфосфата, выделяется из организмазначительная часть азота аминокислот. Наибольшее количество аммиака расходуется на синтез мочевины, которая выводится с мочой в качестве главного конечного продукта белкового обмена в организме человека и животных. Подсчитано, что в состоянии азотистого равновесия организм взрослого здорового человека потребляет и соответственно выделяет примерно 15 г азота в сутки; из экскретируемого с мочой количестваазота на долю мочевины приходится около 85%, креатинина – около 5%, аммонийных солей – 3%, мочевой кислоты – 1% и на другие формы – около 6%.


ДЕКАРБОКСИЛИРОВАНИЕ. БИОГЕННЫЕ АМИНЫ. БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ. ПРИМЕРЫ.

Процесс отщепления карбоксильной группы аминокислот в виде СО2 получил название декарбоксилирования. Несмотря на ограниченный круг субстратов, подвергающихся декарбоксилированию в животных тканях, образующиеся продукты реакции, названные биогенными аминами, оказывают сильное фармокологическое действие на множество физиологических функций человека и животных.

В живых организмах открыты 4 типа декарбоксилирования:

1.альфа-декарбоксилирование. Характерное для тканей животных, при котором от АМК отщепляется карбоксильная группа, стоящая по соседству с альфа-углеродным атомом. Продуктом реакции является СО2 и биогенные амины.

2.w-декарбоксилирование, свойственное микроорганизмам. Например, из аспарагиновой кислоты этим путем образуется альфа-аланин.

3.декарбоксилирование, связанное с реакцией трансаминирования.

4.декарбоксилирование, связанное с реакцией конденсации двух молекул.

Декарбоксилирование облегчается для к-т, содержащих в a-положении электроотрицательные группы. Легкое декарбоксилирование ацетоуксусной (ф-ла I) и нитроуксусной к-т (II) обусловлено возникновением циклич. переходного состояния:

Декарбоксилирование гомологов нитроуксусной к-ты - препаративный метод получения нитроалканов. Наиб. легко осуществляется декарбоксилирование к-т, карбоксильная группа к-рых непосредственно связана с др. электроф. группами. Напр., нагревание пировиноградной к-ты с конц. H2SO4 легко приводит к ацетальдегиду:

При декарбоксилировании щавелевой к-ты в тех же условиях кроме СО2 образуются Н2О и СО.Декарбоксилирование облегчается также, если карбоксильная группа связана с ненасыщенным атомом С; так, декарбоксилирование монокалиевой соли ацетилендикарбоновой к-ты - удобный метод синтеза пропиоловой к-ты:

Декарбоксилирование ацетиленкарбоновой к-ты осуществляют при комнатной т-ре в присут. солей Сu: НС ССООН НС=СН + СО2. Ароматич. к-ты декарбоксилируются, как правило, в жестких условиях, напр., при нагр. в хинолине в присут. металлич. порошков. Таким методом в присут. Сu получают фуран из пирослизевой к-ты. Декарбоксилирование ароматич. к-т облегчается при наличии электроф. заместителей, напр., тринитробензойная к-та декарбоксилируется при нагр. до 40-45 °С. Декарбоксилирование паров карбоновых к-т над нагретыми катализаторами (карбонаты Са и Ва, Аl2О3 и др.) - один из методов синтеза кетонов: 2RCOOH: RCOR + Н2О + СО2. При декарбоксилировании смеси двух к-т образуется смесь несимметричного и симметричного кетонов. Декарбоксилирование натриевых солей карбоновых к-т при электролизе их конц. водных р-ров - важный метод получения алканов. К р-циям декарбоксилирования, имеющим препаративное значение, относится галогендекарбоксилирование - замещение карбоксильной группы в молекуле на галоген. Р-ция протекает под действием LiCl (или N-бромсукцинимида) и тетраацетата Рb на карбоновые к-ты, а также своб. галогенов (Сl2, Вr2, I2) на соли карбоновых к-т, напр.: RCOOM RHal (М = Ag, К, Hg, T1). Серебряные соли дикарбоновых к-т под действием I2 легко превращаются в лактоны:

Важную роль играет также окислит. декарбоксилирование - элиминирование СО2 из карбоновых к-т, сопровождающееся окислением. В зависимости от применяемого окислителя такое декарбоксилирование приводит к алкенам, сложным эфирам и др. продуктам. Так, при декарбоксилировании фенилуксусной к-ты в присут. пиридин-N-оксида образуется бензальдегид:

Подобно декарбоксилированию солей карбоновых к-т происходит декарбоксилирование элементоорг. производных и сложных эфиров, напр.:

Декарбоксилирование сложных эфиров осуществляют также под действием оснований (алкоголятов, аминов и др.) в спиртовом (водном) р-ре или хлоридов Li и Na в ДМСО. Большое значение в разнообразных процессах обмена в-в имеет ферментативное декарбоксилирование. Существует два типа подобных р-ций: простое декарбоксилирование (обратимая р-ция) и окислительное декарбоксилирование, в к-ром происходит сначала декарбоксилирование, а затем дегидрирование субстрата. По последнему типу в организме животных и растений осуществляется ферментативное декарбоксилирование пировиноградной и a-кетоглутаровой к-т - промежуточных продуктов распада углеводов, жиров и белков (см. Трикарбоновых кислот цикл). Широко распространено также ферментативное декарбоксилирование аминокислот у бактерий и животных.


Трансаминирование.Биологическое значение.Примеры

Трансаминирование (переаминирование) – межмолекулярный перенос аминогруппы с a-аминокислоты на a-кетокислоту без промежуточного образования аммиака.

Реакции трансаминирования являются обратимыми и универсальными для всех живых организмом, протекают при участии специфических ферментов аминотрансфераз (трансаминаз). Наиболее распространенными из них являются:

1)глутаматаминотрансфераза (переносит аминогруппу с любой аминокислоты на a-кетоглутаровую кислоту, которая при этом превращается в глутаминовую);

2) аспартатаминотрансфераза (переносит аминогруппу с любой аминокислоты на ЩУК с образованием аспарагиновой кислоты);

3)аланинаминотрансфераза (переносит аминогруппу с любой аминокислоты на ПВК с образованием аланина).Все аминотрансферазы в качестве кофермента содержат пиридоксальфосфат (производное витамина В6).Каждая аминотрансфераза специфична к определенным парам a-амино- и a-кетокислот. В организме человека имеется более десятка аминотрансфераз.Замещение кетогруппы в a-кетокислоте на аминогруппу представляет собой конечную стадию синтеза аминокислоты. Наоборот, замещение NН2-группы в аминокислоте на кетогруппу − первая стадия катаболизма аминокислот. Следовательно, трансаминирование может служить как для синтеза, так и для катаболизма аминокислот.

Аминотрансферазы содержатся практически во всех органах, но наиболее активно реакции трансаминирования протекают в печени.

Функциональное значение трансаминирования в разных органах различно. Например, работающая мышца выделяет в кровь наряду с молочной кислотой значительные количества количества аланина. АЛА образуется в мышце из ПВК путем трансаминирования. Из кровотока АЛА поглощается печенью, где в результате трансаминирования вновь превращается в ПВК, а ПВК используется для глюконеогенеаза (глюкозо-аланиновый цикл). В результате реакций трансаминирования общее количество аминокислот аминокислот в организме не изменяется, т.к. в каждой реакции одна аминокислота превращается в безазотистый остаток (в a-кетокислоту), а один безазотистый остаток – в новую аминокислоту. Напротив, дезаминирование ведет к уменьшению общего количества аминокислот, т.к. NН2-группа не используется для образования новой аминокислоты, а превращается в NН3.

Клиническое значение определения активности трансаминаз. Широкое распространение и высокая активность трансаминаз в органах и тканях человека, а также сравнительно низкие величины активности этих ферментов в крови послужили основанием для определения уровня ряда трансаминаз в сыворотке крови человека при органических и функциональных поражениях разных органов. Для клинических целей наибольшее значение имеют две трансаминазы - аспартат-аминотрансфераза (AcAT) и аланин-аминотрансфераза (АлАТ).В сыворотке крови здоровых людей активность этих трансаминаз в тысячи раз ниже, чем в паренхиматозных органах. Поэтому органические поражения при острых и хронических заболеваниях, сопровождающиеся дектрукцией клеток, приводят к выходу трансаминаз из очага поражения в кровь. Так, уже через 3-5 ч после развития инфаркта миокарда уровень AcAT в сыворотке крови резко повышается (в 20-30 раз). Напротив, при затяжном процессе или наступлении повторного инфаркта миокарда наблюдается новый пик повышения активности этих ферментов в крови. Этим объясняется тот факт, что в клинике трансаминазный тест используется не только для постановки диагноза, но и для прогноза и проверки эффективности лечения.Повышение уровня трансаминаз в сыворотке крови отмечено, кроме того, при некоторых заболеваниях мышц, в частности при обширных травмах, гангрене конечностей и прогрессивной мышечной дистрофии. поражениях клеток печени, например при гепатитах.

 

42. Патологии азотистого обмена(триптофана)

Поступающий в составе белков пищи триптофан в основном используется для синтеза белков организма и гормона мелатонина. Метаболизм остальной части осуществляется в трех направлениях, которые сложны и на некоторых участках перекрещиваются друг с другом. Можно выделить следующие пути:

1)кинурениновый (основной)- окисление и разрушение индольного кольца с образованием производных кинуреновых и антраниловой кислот. В одном из отвлетвлений этого пути одна из 60 молекул триптофана превращается в никотиновую кислоту,большая часть распадается до ацетил-S-KoA.

2)серотониновый-окисление до 5-окситриптофана и далее превращение в серотонин и мелатонин.

Болезнь Хартнупа характеризуется специфическими нарушениями обмена триптофана. Основным проявлением болезни, помимо пеллагро-подобных кожных поражений, психических расстройств и атаксии, служит гипераминоацидурия. Поскольку с мочой выделяются в повышенных количествах индолилацетат, индолилацетилглутамин и индикан, но нормальное количество индолилмолочной кислоты, очевидно, метаболический блок связан с первой реакцией нормального пути обмена триптофана, и обмен преимущественно идет по пути декарбоксилирования. При другом наследственном пороке обмена аминокислот с разветвленной цепью – болезни кленового сиропа и при фенилкетонурии также экскретируется индолил-ацетат, но в этих случаях он имеет своим источником индолилпируват, так как параллельно с мочой выделяется в больших количествах индолил-молочная кислота, которая может образоваться только из фенилпирувата. Согласно новым данным, при болезни Хартнупа метаболический дефект связан с врожденным нарушением всасывания триптофана в кишечнике и реабсорбции триптофана и продуктов его обмена в почках. Из этого следует, что по химическому составу индолилпроизводных в моче и крови можно судить о природе болезни (карциноидная опухоль, фенилкетонурия и др.) и о механизме нарушения обмена триптофана, что важно для постановки правильного диагноза и проведения адекватного лечения.3)индольный- образование индольных производных, которые затем конъюгируются и выводятся с мочой.

43. Патологии азотистого обмена (тирозина,фенилаланина) Фенилаланин - незаменимая аминокислота, так как в клетках животных не синтезируется её бензольное кольцо. Тирозин - условно заменимая аминокислота, поскольку образуется из фенилаланина. Фенилаланин и тирозин используются для синтеза многих биологически активных соединений.

Основное количество фенилаланина расходуется по 2 путям:

1)включается в белки;

2)превращается в тирозин.

Превращение фенилаланина в тирозин прежде всего необходимо для удаления избытка фенилаланина, так как высокие концентрации его токсичны для клеток. Образование тирозина не имеет большого значения, так как недостатка этой аминокислоты в клетках практически не бывает.

Основной путь метаболизма фенилаланина начинается с его гидроксилирования, в результате чего образуется тирозин. Эта реакция катализируется специфической монооксигеназой.

Обмен тирозина значительно сложнее, чем обмен фенилаланина. Кроме использования в синтезе белков, тирозин в разных тканях выступает предшественником таких соединений, как катехоламины, тироксин, меланины, и ка-таболизируется до СО2 и Н2О.

Фенилкетонурия.В печени здоровых людей небольшая часть фенилаланина (до 10%) превращается в фениллактат и фенилацетилглутамин. Этот путь катаболизма фенилаланина становится главным при нарушении основного пути – превращения в тирозин, катализируемого фенилаланингидроксилазой. Такое нарушение сопровождается гиперфенилаланинемией и повышением в крови и моче содержания фенилаланина и его метаболитов альтернативного пути. Классическая фенилкетонурия – наследственное заболевание, связанное с мутациями в гене фенилаланингидроксилазы. Наиболее тяжелые проявления фенилкетонурии – нарушение умственного и физического развития, судорожный синдром, нарушение пигментации. Эти проявления связаны с токсическим действием на клетку высоких концентраций фенилаланина, фенилпирувата, фениллактата.

Тирозинемии.Наследственные нарушения метаболизма тирозина в печени. Известно два типа.

I тип – дефект фермента фумарилацетоацетатгидроксилазы, из-за которого накапливаются в крови токсические метаболиты что приводит к тяжелому поражению печени и почек.

При II типе нет фермента тирозинаминотрансферазы. Повышется концентрация тирозина, наблюдается гиперкератоз ладоней и подошв.

Алкаптонурия.Причина заболевания – дефект диоксигеназы гомогентизиновой кислоты. Для этой болезни характерно выделение с мочой большого количества гомогентизиновой кислоты, которая, окисляясь воздухом, образует темные пигменты алкаптоны. Кроме того наблюдается пигментация соединительной ткани. Умственное и физическое развитие не нарушено.

Альбинизм.Обусловлен отсутствием тирозиназы и, соответственно, нарушается синтез пигментов меланинов. Клиническое проявление – отсутствие пигментации кожи и волос. Умственное развитие не страдает. У людей с альбинизмом повышенная склонность к солнечным ожогам.

Болезнь Паркинсона.Заболевание развивается при недостаточности дофамина в чёрной субстанции мозга. Это одно из самых распространённых неврологических заболеваний (частота 1:200 среди людей старше 60 лет). При этой патологии снижена активность тирозингидроксилазы, ДОФА-декарбоксилазы. Заболевание сопровождается тремя основными симптомами: акинезия (скованность движений), ригидность (напряжение мышц), тремор (непроизвольное дрожание).



Поделиться:


Последнее изменение этой страницы: 2017-01-24; просмотров: 727; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.23.89 (0.046 с.)