Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Термодинамика газового потокаСодержание книги
Поиск на нашем сайте
4.1. Уравнения и параметры движущегося газа В рассмотренных выше процессах не учитывалась кинетическая энергия рабочего тела. Однако в теплотехнике широко распространены энергетические установки, в которых преобразование энергии осуществляется в движущемся газе. Такие процессы происходят в турбинах, реактивных двигателях, лопаточных и струйных компрессорах и т.п. Рассмотрим уравнения термодинамики для стационарного одномерного потока идеального газа. Для газового потока в любом сечении справедливо уравнение состояния, записанное через плотность: p = ρRT, (4.1) где p – давление в рассматриваемом сечении; ρ – плотность газа в этом сечении; R – газовая постоянная; T – термодинамическая температура (температура, которую покажет в данном сечении безинерционный термометр, перемещающийся со скоро-стью газового потока). В термодинамике величину скорости потока газа обозначают с и измеряют в м/с. Часто с целью количественной оценки величины скорости потока ее сравнивают со скоростью распространения слабых возмущений в среде газа. При выведении газа из равновесия в каком-либо месте в нем возникает движение частиц. Эти возмущения передаются по всему газу (подвижному и неподвижному) с так называемой с к о р о с т ь ю з в у к а. Скорость звука обозначается a, измеряется в м/с и вычисляется поизвестной из физики формуле:
Если c <
4.1.1. Уравнение энергии В движущемся газе выделим сечениями 1-1 и 2-2, Рис. 4.1, участок потока. Рис.4.1 На основании первого закона термодинамики для энергоизолирован- ного потока (данная система не обменивается теплотой и работой с окружающей средой) можем записать Е1 = Е2. Отсюда для m = 1кг газа уравнение (1.7) в сечениях потока будет иметь вид:
Это означает, что для любого сечения потока газа сумма энтальпии и кинетической энергии одинакова, т.е.
Выражение (4.3) называют у р а в н е н и е м э н е р г и и потока газа. Из него следует, что изменить скорость газа в потоке можно лишь только за счет изменения энтальпии. Уравнение энергии можно записать в другом виде. Продифференцируем выражение (4.3) и получим: cdc = - di. Из первого закона термодинамики, записанного в виде dq = di -vdp, при dq = 0 следует, что di = vdp. Тогда c dc = - v dp. (4.4) Выражение (4.4) приписывают Д. Бернулли, поэтому в технической литературе его называют у р а в н е н и е м Б е р н у л л и. Это уравнение устанавливает связь скорости с давлением. Из него следует, что для увеличения скорости (dc > 0) необходимо снижение давления (dp < 0) и наоборот.
4.1.2. Параметры торможения Если на пути движущегося газа поставить преграду, то в сечении, где поток полностью затормозится (c = 0), параметры газа называют п а р а - м е т р а м и т о р м о ж е н и я. Их обозначают p0, T0 , ρ0. Для замкнутого объема с неподвижным газом, параметры газа соответствуют параметрам торможения. Определим параметры торможения движущегося газа. Для этого запишем уравнение энергии для двух сечений: в одном газ движется со скоростью c, а в другом – поток заторможен: i + Выразим энтальпию газа через теплоемкость и температуру:
Из этого выражения определим температуру торможения:
Так как
где Отношение В окончательном виде формула температуры торможения имеет вид:
Используя адиабатную связь между температурой и давлением, получим формулу для давления торможения:
Плотность ρ0 определяется по p0 и T0 из уравнения (4.1).
4.1.3. Уравнение скорости движения газа Уравнение скорости движения газа в произвольном сечении потока получим из уравнения энергии. Пусть газ вытекает из емкости, где его скорость была равна нулю. Тогда уравнение энергии для произвольного сечения потока газа и для сечения, где c = 0, будет иметь вид:
Отсюда c = Если отношение температур заменить отношением давлений, то
c= Из выражения (4.7) следует, что величина скорости газа в рассматриваемом сечении потока зависит от природы газа, от параметров в его исходном (заторможенном) состоянии и от давления газа в рассматриваемом сечении. 4.1.4. Уравнение расхода Термодинамика газового потока в основном рассматривает стационарное движение газа. Это означает, что через все сечения канала в любой момент времени протекает одно и то же массовое количество газа. Обозначается секундный массовый расход
Выразим секундный массовый расход через параметры заторможенного газового потока, для чего в выражение (4.8) вместо c подставим его значение (4.7), а плотность представим в виде
Тогда
4.2. Течение газа в каналах 4.2.1. Уравнение обращения воздействия Каналы, в которых газовый поток увеличивает свою скорость, называются с о п л а м и. Каналы, скорость в которых уменьшается, именуют д и ф -ф у з о р а м и. Геометрическая форма сопел может быть различной. Это зависит от того, каково внешнее воздействие на газовый поток. В 1948 г. А.А. Вулис получил зависимость, выражающую связь геометрии сопла с характером внешнего воздействия на поток. Для неэнергоизолированного движения газа зависимость Вулиса имеет вид:
Здесь первое слагаемое правой части уравнения выражает г е о м е т- р и ч е с к о е в о з д е й с т в и е на движущийся газ, второе – м а с с о в о е, третье – т е п л о в о е и четвертое – м е х а н и ч е с к о е. Уравнение (4.10) является математическим выражением принципа обращения воздействия, суть которого состоит в том, что характер влияния каждого воздействия на газовый поток противоположен при сверхзвуковых и дозвуковых течениях газа. Проанализируем лишь геометрическое воздействие. В этом случае из уравнения (4.10) следует:
При дозвуковом течении газа (Мa < 1) знаки у величин dc/c и dF/F противоположны. Это значит, что в сужающемся канале, где dF < 0, газ будет разгоняться, т.е. dc > 0, а в расширяющемся, где dF > 0, – тормозиться, т.е. dc< 0. При сверхзвуковом потоке газа (M >1) знаки у величин dc/c и dF/F одинаковые. Следовательно, для увеличения скорости необходим расширяющий канал, а для торможения - сужающийся.
Рис. 4.2 4.2.2 Течение газа в соплах Лаваля При движении газа вдоль сверхзвукового геометрического сопла своеобразно изменяются его параметры. Для выявления характера изменения давления по длине сопла из уравнений (4.4) и (4.11) можно получит выражение:
Из анализа данного уравнения следует, что давление вдоль сопла уменьшается. Кривая давления в дозвуковой части сопла имеет выпуклый вид, а в сверхзвуковой – вогнутый. Температура вдоль сопла уменьшается, так как процесс расширения газа адиабатный. С такой же закономерностью уменьшается по длине сопла и скорость звука. Характер изменения скорости вдоль сопла устанавливается уравнением Бернулли (4.4), записанным в виде:
В сужающейся части сопла это вогнутая кривая. а в расширяющейся – выпуклая, асимптотически приближающаяся к максимально возможной скорости при р = 0. Качественные изменения давления, температуры, скорости звука и скорости потока по длине геометрического сопла представлены на рис.4.3.Характерным для канала такой формы является участок перехода дозвукового течения в сверхзвуковой. Сечение канала, в котором скорость потока достигает величины, равной местной скорости звука, называют к р и т и ч е с к и м.
Получим выражение для ркр и Ткр через параметры торможения. В критическом сечении
После незначительных преобра – зований получим:
Если обозначить:
то ркр = р0 βкр. Величина β определяется только значением показателя адиабаты к. Рис. 4.3 Так, для воздуха при к = 1,4 значение βкр = 0,528. Отсюда следует, что для воздуха критическое давление меньше давления торможения в 1,89 раза. Значение критической температуры получим из выражения (4.12), заменив отношение давлений отношением температур: Ткр= Т0 Теперь выражение для критической скорости можно представить в другом виде: скр = Скорость газа в каждом сечении сопла и на выходе из него вычисляется по формуле (4.7). Если секундный массовый расход выразить через параметры торможения и площадь критического сечения, то зависимость (4.9) существенно упрощается:
. Если давление газа в выходном сечении сопла равно давлению окружающей среды (
4.2.3. Дросселирование газа и пара Д р о с с е л и р о в а н и е м называют процесс понижения давления в газовом потоке при преодолении местного сопротивления в канале. При дросселировании газа или пара протекает необратимый процесс снижения давления без совершения внешней работы. Если в канале имеется местное сопротивление в виде резкого сужения вида перегородки с отверстием, задвижки, клапана и т.п., то газовый поток перестраивает свою геометрическую форму, как до сужения, так и после него. Перестройка формы потока и перетекание через само сужение связано с образованием вихревых движений газа. Часть кинетической энергии потока идет на образование вихрей, часть – на преодоление сопротивления трения. Затраченная на это энергия необратимо превращается в теплоту, которая воспринимается газом. Поэтому давление после местного сопротивления не восстанавливается до первоначального. Изменение давления, скорости и температуры по длине канала приведено на рис.4.4. Скорость газа при протекании его через сужение возрастает, что вызывает снижение давления и температуры. После сужения скорость понижается, но давление, вследствие указанных причин, не восстанавливается до первоначального. Степень снижения давления газа при дросселировании зависит от природы газа и его состояния, относительной величины сужения, скорости газа. Обозначим степень снижения давления через
где ∆р – величина снижения давления; р – давление на входе в сужение. В энергетических установках дросселирование нежелательно, т.к. при падении давления снижаются энергетические возможности газа. Но иногда дросселирование является необходимым и создается искусственно, например, в редукторах, регуляторах и т.п. При термодинамическом анализе особенностей процесса дросселирования целесообразно использовать общее уравнение энергии:
В канале можно обеспечить с1 = с2, тогда i1 =i2. Из чего следует, что энта- льпия газа в процессе дросселирования остается постоянной. Рис. 4.4 Этот вывод справедлив как для идеальных, так и для реальных газов. При дросселирования идеального газа Т1 = Т2, поскольку i1 = i2. Это значит, что для идеального газа температура после дросселирования равна температуре на входе в дроссель. Для реального газа изменение температуры при его дросселировании в отличие от идеального газа имеет своеобразный характер. Как показывают опыты, температура реального газа в результате дросселирования повышается, понижается или не изменяется. Это свойство впервые обнаружили ученые Д. Джоуль и У. Томсон, поэтому оно носит название э ф ф е к т а Д ж о у л я-Т о м с о н а. Используя дифференциальные уравнения, связывающие i, s, ρ и T, можно получить для газа, подчиняющегося уравнению Ван-дер-Ваальса, следующую зависимость:
Отношение бесконечно малого изменения температуры к бесконечно малому изменению давления при дросселировании называется д р о с с е л ь - э ф ф е к т о м и обозначается α = Так как при дросселировании dp < 0, а cp – величина положительная, то знак α будет зависеть от знака числителя выражения (4.16). При этом возможны три случая: а) б) в) Изменение знака дроссель - эффекта α называется и н в е р с и е й, а температура, при которой dT = 0, называется т е м п е р а т у о й и н в е р с и и и обозначается Tинв.
Каждый конкретный газ имеет индивидуальную температуру инверсии. Так, например, для воздуха Тинв = 650 К; для водорода Тинв = 204 К; для водяного пара Тинв= 682 К. Для установления температуры реального газа после дросселя необходимо сравнить Tвх с Tинв.Если температура газа на входе в дроссель равна его температуре инверсии, то после дросселя она восстановится до прежнего значения. При Tвх< Tинв температура газа после дросселя уменьшится, а. при Tвх> Tинв - она возрастет. Характер изменения температуры при дросселировании
Глава 5 Циклы тепловых машин Главной задачей технической термодинамики является установление эффективности взаимного преобразования теплоты и работы в тепловых машинах. Под тепловыми машинами понимают технические устройства, в которых преобразование различных видов энергии связано с формами энергообмена - теплотой и работой. Многообразен круг тепловых машин, созданных человеком: это ядерные силовые установки, двигатели внутреннего и внешнего сгорания, холодильные машины и т.д. Безусловно, вопрос экономичности преобразования энергии при создании любой тепловой машины всегда был, есть и будет первоочередным. Эффективность взаимного превращения теплоты и работы в тепловых машинах можно оценить, анализируя их циклы. Напомним, что цикл - это совокупность термодинамических процессов, в результате осуществления которых происходит взаимное преобразование теплоты и работы, а рабочее тело возвращается в исходное состояние. Прежде всего, рассмотрим циклы некоторых тепловых двигателей. С термодинамической точки зрения тепловой двигатель представляет собой тепловую машину, в которой часть теплоты, подведенной к рабочему телу, преобразуется в полезную работу. Создано большое разнообразие тепловых двигателей. Их различают по многим признакам.: 1) по источнику энергии: химические, ядерные, электрические; 2) по месту преобразования химической энергии топлива в теплоту (двигатели внутреннего сгорания и двигатели внешнего сгорания); 3) по виду рабочего тела: паровые, газовые, плазменные; 4) по конструкции расширительной машины: поршневые, турбинные, реактивные; 5) по области применения: стационарные, автомобильные, авиационные, ракетные и др.
Цикл Карно Наиболее экономичным циклом тепловых двигателей является идеальный цикл Карно. В 1824 г. С. Карно опубликовал фундаментальный труд по теории теплотехники ²Размышления о движущейся силе огня и машинах, способных развивать эту силу², в котором был рассмотрен абстрактный тепловой двигатель с простейшим идеальным циклом, состоящим из обратимых процессов.
Таким образом, за весь цикл рабочему телу от теплоисточника сообщена теплота q1 и отведена в теплоприемник теплота q2.Запишем термический КПД этого цикла: Рис. 5.1 . Выразим q1 и q2 через параметры изотермического процесса: q1 = RT1 ln Подставим их значения в КПД, получим:
В адиабатных процессах цикла выразим температуры через удельные объемы
Откуда vB/vC = vA/vD или vB/vA = vC/vD. В итоге, после сокращения уравнение термического КПД цикла Карно имеет вид:
Анализ выражения (5.1) показывает, что термический КПД обратимого цикла Карно: – зависит только от абсолютных температур теплоисточника и теплоприемника (он будет тем больше, чем выше температура теплоисточника и чем ниже температура теплоприемника); – всегда меньше единицы, так как для получения –-не зависит от природы рабочего тела и при T1 = T2 равен нулю, т.е. если тела находятся в тепловом равновесии, то от них невозможно получить работу; – имеет наибольшее значение по сравнению с КПД любого цикла, осуществляемого в одном и том же интервале температур. Последнее можно показать, используя координаты Ts. Любой произвольный цикл (пусть это будет цикл 1-2-3-4 на рис.5.2) можно впи-
qц 12341 < qц ABCD, а отведенная теплота q2 а143b > q1 aDCb. Цикл Карно не применяется в реальных тепловых двигателях. И не только потому, что реальные процессы необратимы. Оказывается, что осуществить процессы, из которых состоит цикл Карно, нецелесообразно. Рис. 5.2 Если изобразить газовый цикл Карно в pv – координатах строго в соответствии с полученными реальными значениями параметров в точках А, В, С и D, то из-за относительно небольшой разницы в крутизне изотерм и адиабат окажется, что площадь этого цикла ничтожна, а протяженность его в направлениях обеих координат велика. Так, например, в цикле Карно при PC = 0,1 МПа, TC = 1000 К и TA = 2500 К давление в конце сжатия должно быть около 4,5 103 МПа, а объем при расширении должен увеличиться в 400 раз. В существующих же двигателях давление не превышает 4,5 МПа, а объем изменяется не более чем в 25 раз. Таким образом, если построить поршневой двигатель, работающий по циклу Карно, то его преимущество по термическому КПД будет сведено на нет потерями на трение поршня в очень длинном цилиндре. В реальных условиях осуществить цикл Карно невозможно, но значение его КПД может служить эталоном при опенке совершенства любых циклов тепловых двигателей. Выше рассмотрен цикл Карно, в котором направление процессов совпадает с движением часовой стрелки A-B-C-D-A (рис.5.1). Такой цикл называют п р я м ы м. Если же совершается цикл против часовой стрелки A-D-C-B-A, его называют о б р а т н ы м. В обратных циклах за счет затраты энергии в форме работы теплота передается от холодного источника горячему, в результате чего происходит охлаждение холодного источника и нагрев горячего. Такой цикл рассматривается в холодильных установках.
|
|||||
|
Последнее изменение этой страницы: 2017-01-23; просмотров: 602; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.220 (0.008 с.) |