Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Генеральная совокупность и выборка. Характеристики выборки. Способы отбора.Содержание книги
Поиск на нашем сайте
Генеральная совокупность – все множество имеющихся объектов. Выборка – набор объектов, случайно отобранных из генеральной совокупности.
В матем статистике понятие генеральной совокупности трактуется как совокупность всех мыслимых наблюдений, которые могли бы быть произведены при данном реальном комплексе условий. Иначе, совокупность объектов, из которых произведена выборка.ё ё Выборочная совокупность -совокупность случайно отобранных объектов. Выборочный метод обследования, или как его часто называют, выборка, применяется, прежде всего, в тех случаях, когда сплошное наблюдение вообще невозможно. Виды выборки: вероятностные и невероятностные. Вероятностная выборка: 1. Простая вероятностная выборка: - простая повторная выборка. Использование такой выборки основывается на предположении, что каждый респондент с равной долей вероятности может попасть в выборку. - простая бесповторная выборка. 2. Систематическая вероятностная выборка. Является упрощенным вариантом простой вероятностной выборки. 3. Серийная вероятностная выборка. 4. Районированные выборки 5. «Удобная» выборка Процедура «удобной» выборки состоит в установлении контактов с «удобными» единицами выборки. Невероятностные выборка (отбор в такой выборке осуществляется не по принципам случайности, а по субъективным критериям- доступности, типичности, равного представительства и т.д.: 1.Квотная выборка- выборка строится как модель, которая воспроизводит структуру генеральной совокупности в виде квот изучаемых признаков. 2. Метод снежного кома. 3. Стихийная выборка. Способы отбора: 1.Рандомизация или случайный отбор, используется для создания случайных выборок. 2.Попарный отбор- стратегия построения групп выборки, при котором составляются из субъектов, эквивалентных по значимым для эксперимента побочным параметрам. 3.Многоступенчатый способ построения выборки. При многоступенчатом отборе выборка строится в несколько этапов, причём на каждой стадии меняется единица отбора. 4..Многосфазный способ построения выборки.- является разновидностью многоступенчатого способа, заключается в том, что из сформированной выборки большего объёма производится новая выборка меньшего объёма, при этом, единица отбора остаётся одной и той же. 5.Комбинированный способ построения выборки- соединение в многоступенчатой выборке различных приёмов отбора. Статистическое распределение выборки.
Эмпирическая функция распределения.
Полигон и гистограмма. Для наглядного представления о поведении исследуемой случайной величины в выборке можно строить различные графики. Один из них – полигон частот: ломаная, отрезки которой соединяют точки с координатами (x 1, n 1), (x 2, n 2),…, (xk, nk), где xi откладываются на оси абсцисс, а ni – на оси ординат. Если на оси ординат откладывать не абсолютные (ni), а относительные (wi) частоты, то получим полигон относительных частот (рис.1). Рис. 1. По аналогии с функцией распределения случайной величины можно задать некоторую функцию, относительную частоту события X < x. Определение 15.1. Выборочной (эмпирической) функцией распределения называют функцию F* (x), определяющую для каждого значения х относительную частоту события X < x. Таким образом, , (15.1) где пх – число вариант, меньших х, п – объем выборки.
Замечание. В отличие от эмпирической функции распределения, найденной опытным путем, функцию распределения F (x) генеральной совокупности называют теоретической функцией распределения. F (x) определяет вероятность события X < x, а F* (x) – его относительную частоту. При достаточно больших п, как следует из теоремы Бернулли, F* (x) стремится по вероятности к F (x). Из определения эмпирической функции распределения видно, что ее свойства совпадают со свойствами F (x), а именно: 1) 0 ≤ F* (x) ≤ 1. 2) F* (x) – неубывающая функция. 3) Если х 1 – наименьшая варианта, то F* (x) = 0 при х ≤ х 1; если хк – наибольшая варианта, то F* (x) = 1 при х > хк. Для непрерывного признака графической иллюстрацией служит гистограмма, то есть ступенчатая фигура, состоящая из прямоугольников, основаниями которых служат частичные интервалы длиной h, а высотами – отрезки длиной ni /h (гистограмма частот) или wi /h (гистограмма относительных частот). В первом случае площадь гистограммы равна объему выборки, во втором – единице (рис.2). Рис.2.
|
||||
Последнее изменение этой страницы: 2016-12-27; просмотров: 402; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.77.51 (0.006 с.) |