Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Хаос, стохастика, аттракторы и бифуркацииСодержание книги
Поиск на нашем сайте
В рамках данной статьи мы будем использовать при разработке фрактальной логики аппарат стохастических систем и стохастическую динамику на комплексной плоскости. Поэтому с аттрактором ( на комплексной плоскости) мы будем связывать точку или предельный цикл, на которых сходится процесс итераций при . В роли аттрактора может выступать притягивающая неподвижная точка или притягивающий цикл определенного периода. Иногда таких аттракторов может быть несколько, они также могут состоять из бесчисленного количества точек и представлять собой какое-нибудь другое множество. Если же в процессе итераций изображающая их точка уходит на бесконечность, то аттрактором такого процесса считается бесконечно удаленная точка. Термин " бифуркация " буквально означает " раздвоение " и употребляется как название любого скачкообразного изменения, происходящего при плавном изменении параметров в любой из динамических систем: экономической, социальной, системах термо- и газодинамики. Для формального описания состояний таких систем используется фазовое пространство переменных. Семейства траекторий системы в фазовом пространстве образуют ее фазовый портрет. Бифуркации проявляются в резком изменении фазового портрета.
Фрактальная парадигма хаоса Вкратце охарактеризуем новую и уже весьма распространенную в современной науке парадигму - парадигму хаоса. В нашей разработке мы также будем ее использовать. Конец прошлого столетия ознаменовался новыми идеями, теориями и фундаментальными открытиями в науке, в числу которых принадлежат и открытия, связанные с теорией хаоса, фрактальной геометрией, синергетикой, теорией нелинейных динамических систем, теорией диссипативных структур и процессов. В различных отраслях научного знания появилось множество публикаций, связанных с применением этих теорий - и прежде всего теорий фракталов и хаоса - в целом ряде прикладных разработок (например, использованием теорий хаоса и фракталов в биржевой аналитике, в биотехнологиях, радиосвязи, компьютерных информационных технологиях и др. Ученым стало ясно, что практически все наблюдаемые и исследуемые объекты природы имеют фрактальный характер. Даже хаос как объект исследования современной физики стал рассматриваться не как "мера беспорядка", а как нечто, имеющее более высокую степень (фрактальной) организованности материи. Фрактальный характер объектов проявляется в их дробной размерности. Например, такие объекты могут иметь размерность 0,7 или 1,3, или 2,6. Поэтому в привычных для нашего восприятия одномерных, двумерных и трехмерных пространствах такие объекты не могут наблюдаться во всей полноте и «тают» в нашем представлении, словно “ежик в тумане”. Нечеткость фрактальных объектов не только проявляется в их свойствах. Она заложена в самой «природе» объектов. Фракталы по своей природе – это нечеткие объекты с нечеткими свойствами, нечеткой геометрией и нечеткими алгоритмами, проявляющимися в особых формах симметрии – самоподобии, самоафинности. Им свойственны также формы симметрии и более высоких порядков, выражающиеся не только в виде линейных, но и в виде степенных и иных зависимостей. Если применять традиционные экстраполятивные математические методы и приемы при прогнозировании, то, как правило, поведение нелинейных систем непредсказуемо, даже для систем с простой структурой. Все попытки объяснить это поведение привычными методами линейной математики обречены на неудачу. Так, например, непредсказуемо поведение участников каких-либо экономических, политических или социальных схем. Их участники, вступая в "игру" или "революции", образуют системы с неустойчивыми параметрами, поведение которых невозможно предсказать. По-видимому, существуют необъяснимые "законы хаоса" для этих систем, следуя которым, с неотступной периодичностью наступают фазы кризиса, депрессии, оживления и подъема для этих систем в целом. Другими словами, в этой хаотической непредсказуемости имеется некий строгий порядок. Рассмотрим пример использования возможностей нового научного подхода и современных представлений "об организационной сложности" объектов к анализу социально-экономических систем. Одним из таких примеров "сложной" системы является любое современное государство. В рамках такой системы можно выделить столь злободневную для нас проблему "управления кризисами". Под кризисом понимается такое состояние системы, когда она находится в непосредственной окрестности или прямо в точке бифуркации, т. е. когда состояние системы способно качественным образом измениться. Хаос, в котором пребывает находящаяся в кризисном состоянии система, внешне похож на обычную неразбериху. Состояние системы видимым образом обусловлено совокупным действием множества причин: характер хаотической динамики сопровождается непредсказуемыми, асинхронными и разноамплитудными всплесками, отсутствием какого-либо порядка и т. п. Система пребывает в крайне неустойчивом, кризисном положении, как застывший над пропастью канатоходец, она потенциально готова совершить бифуркацию. Даже легкий порыв ветра способен сбросить канатоходца в пропасть, это - стандартная ситуация, когда "верхи не могут, а низы не хотят". Удивительная особенность хаоса в том, что такие системы, как бы велики они не были, очень легко управляемы. Канатоходцу для этого достаточно пошевелить пальцем, в крайнем случае, взмахнуть рукой. Нужно только в нужный момент помочь системе, или как мы говорим, канатоходцу - удержаться. Для этого достаточно выполнить незаметное, легкое корректирующее движение.
|
||||
Последнее изменение этой страницы: 2016-12-26; просмотров: 384; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.42.233 (0.008 с.) |