Экстремумы (необходимое условие существования с док.). 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Экстремумы (необходимое условие существования с док.).

Поиск

Определение. Точка x0 называется точкой минимума функции f, если для всех x из некоторой окрестности x0 выполняется неравенство f(x) ≥ f(x0. Определение. Точка x0 называется точкой максимума функции f, если для всех x из некоторой окрестности x0 выполняется неравенство f(x) ≤ f(x0. Для точек минимума и максимума функции есть общее определение - точки экстремума. Значение функции в этих точках соответственно назывется максимумом или минимумом этой функции. Общее название - экстремум функции. Точки максимума обычно обозначают xmax, а точки минимума - xmin Доказательство. Докажем необходимость условия существования максимума. Пусть f '(x) = 0, f ''(x) > 0.
Так как f ''(x) непрерывна, то в достаточно малом интервале (x0 - h, x0 + h) вторая производная положительна: f ''(x) > 0. Это означает, что f '(x) возрастает в этом интервале. Так как при этом f '(x0)=0, то f '(x)<0 в интервале (x0 - h, x0) и f '(x)>0 в интервале (x0, x0 + h).
Таким образом, функция f(x) убывает в интервале (x0 - h, x0) и возрастает в интервале (x0, x0 + h). Поэтому в точке x0 функция f(x) имеет минимум. Аналогично доказывается достаточность условия существования максимума. На рисунке функция f(x) имеет в точке x1 минимум, в точке x2 - максимум.
Второй производной можно воспользоваться при решении задач на отыскание максимума и минимума функции.

Экстремумы (достаточное условие существования без док.), схема исследования на экстремум

Теорема 1. Если функция f(x) имеет в каждой точке интервала (a, b) неотрицательную производную, то она является неубывающей функцией в этом интервале.

Теорема 2. Если функция f(x) в каждой точке интервала (a, b) имеет неположительную производную, то она является невозрастающей функцией в этом интервале.
Теорема 3. (первый достаточный признак экстремума). Если производная f '(x) функции f(x) обращается в нуль в точке x0 или не существует и при переходе через x0 меняет свой знак, то функция f(x) имеет в этой точке экстремум (максимум, если знак меняется с "+" на "-", и минимум, если знак меняется с "-" на "+").

Теорема 4. (второй достаточный признак существования экстремума функции). Если в точке x0 первая производная f '(x) функции f(x) обращается в нуль, а её вторая производная f ''(x) отлична от нуля, то в точке x0 функция f(x) достигает экстремума (минимума, если f ''(x) > 0, и максимума, если f ''(x) < 0). Предполагается, что f ''(x) непрерывна в точке x0 и ее окрестности.

Алгоритм исследования функции на экстремум:

1)Найти производную функции.
2)Найти критические точки, т.е. точки, в которых функция непрерывна, а производная равна нулю или не существует.
3)Рассмотреть окрестность каждой из точек, и исследовать знак производной слева и справа от этой точки.
4)Определить координаты экстремальных точек, для этого значения критических точек подставить в данную функцию. Используя достаточные условия экстремума, сделать соответствующие выводы.

Интервалы выпуклости и вогнутости, точки перегиба.

График функции y = f(x) называется выпуклым на интервале (a; b), если он расположен ниже любой своей касательной на этом интервале.

График функции y = f(x) называется вогнутым на интервале (a; b), если он расположен выше любой своей касательной на этом интервале.

Теорема. Пусть y = f(x) дифференцируема на (a; b). Если во всех точках интервала (a; b) вторая производная функции y = f(x) отрицательная, т.е. f ''(x) < 0, то график функции на этом интервале выпуклый, если же f ''(x) > 0 – вогнутый.

Теорема. Пусть кривая определяется уравнением y = f(x). Если f ''(x 0) = 0 или f ''(x 0) не существует и при переходе через значение x = x0 производная f ''(x) меняет знак, то точка графика функции с абсциссой x = x0 есть точка перегиба.

Асимптоты.

Прямая называется асимптотой графика функции y = f(x), если расстояние от переменной точки M графика до этой прямой при удалении точки M в бесконечность стремится к нулю, т.е. точка графика функции при своем стремлении в бесконечность должна неограниченно приближаться к асимптоте.

вертикальной асимптотой графика функции y = f(x) называется прямая, если f(x) → ∞ хотя бы при одном из условий xx0 – 0 или xx0 + 0, x = x0

Следовательно, для отыскания вертикальных асимптот графика функции y = f(x) нужно найти те значения x = x0, при которых функция обращается в бесконечность (терпит бесконечный разрыв). Тогда вертикальная асимптота имеет уравнение x = x0.

Теорема. Прямая y = kx + b служит наклонной асимптотой при x → +∞ для графика функции y = f(x) тогда и только тогда, когда . Аналогичное утверждение верно и при x → –∞.

54.Формула Тейлора:

(Rn(x) - остаточный член формулы Тейлора).

Многочлен Тейлора порядка n:


Остаточный член формулы Тейлора

В форме Лагранжа:

В форме Коши:

В форме Пеано:

при

В интегральной форме:

55. Формула Тейлора для любой функции, разложение функций ex, sinx.

Основные разложения в ряд Тейлора

56. Функции многих переменных: способы задания, область определения, непрерывность и разрывы.

 

1. Обозначим через D некоторое множество точек в п -мерном пространстве.

Если задан закон f, в силу которого каждой точке М (х;...; х) D ставится в соответствие число и, то говорят, что на множестве D определена функция и = f (х;...; х).

Множество точек М (х;...; х), для которых функция и = f (х;...; х) определена, называют областью определения этой функции и обозначают D (f).

Функции многих переменных можно обозначать одним символом и = f (М), указывая размерность пространства, которому принадлежит точка М.

Функции двух переменных можно изобразить графически в виде некоторой поверхности.

Графиком функции двух переменных z=f (х; у) в прямоугольной системе координат Оху называется геометрическое место точек в трехмерном пространстве, координаты которых (х; у; z) удовлетворяют уравнению z=f (х; у).

Функция и = f (М) называется непрерывной в точке М, если

= f (М).

Функция и = f (М) называется непрерывной на множестве D, если она непрерывна в каждой точке МD.

Точки, в которых непрерывность функции нарушается, называются точками разрыва функция. Точки разрыва могут быть изолированными, создавать линии разрыва, поверхности разрыва и т. д.Например, функция z= имеет разрыв в точке (0;0), а функция z= имеет разрыв на параболе



Поделиться:


Последнее изменение этой страницы: 2016-12-14; просмотров: 1336; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.221.59.242 (0.011 с.)