Основные статистические распределения 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные статистические распределения



Построение разного рода оценок и статистических критериев часто основывается на использовании ряда специальных распределений случайных величин.

Нормальное распределение. Случайная величина имеет нормальное распределение с параметрами и , что обозначается как , если плотность вероятности этой случайной величины имеет вид

. (3.25)

График плотности вероятности случайной величины, имеющей нормальное распределение, представлен на рисунке 3.5, на котором видно, что максимум функции находится в точке .

Поскольку нормальное распределение подробно изучается в курсе теории вероятностей, напомним свойства нормальной случайной величины, которые будут использоваться в дальнейшем.

 

 
 

Рис. 3.5

1) , .

2) Случайная величина называется центрированной, если ее математическое ожидание равно нулю. Для того чтобы центрировать случайную величину, надо вычесть из нее математическое ожидание:

.

3) Случайная величина называется нормированной, если ее дисперсия равна единице, а математическое ожидание равно нулю.

Для того чтобы нормировать случайную величину, надо ее поделить на среднее квадратическое отклонение:

.

Центрированная и нормированная нормальная случайная величина называется стандартной. Таким образом, стандартной будет случайная величина

~ . (3.26)

Вероятность попадания случайной величины в интервал (α,β) вычисляется по формуле

, (3.27)

где - интеграл вероятности, представляющий собой функцию распределения стандартной нормально распределенной случайной величины. Интеграл вероятности табулирован. Его значения приведены в таблице В Приложения.

Для стандартной нормальной случайной величины и симметричного промежутка формула (3.27) принимает следующий вид:

 

. (3.28)

Распределение (хи-квадрат). Если , независимые стандартные нормальные случайные величины, то говорят, что случайная величина

(3.29)

имеет распределение хи-квадрат с степенями свободы, что обозначается как . Графики плотности вероятности для двух значений степени свободы приведены на рис.3.6.

 
 

Рис. 3.6

С увеличением числа степеней свободы плотность вероятности стремится к нормальной. При плотность вероятности постоянно убывает, а при имеет единственный максимум , , .

Распределение Стьюдента. Пусть , , , - независимые стандартные нормальные случайные величины. Тогда случайная величина

(3.30)

имеет распределение Стьюдента с степенями свободы, что обозначается как , при этом

, .

На рис.3.7 приведены кривые стандартного нормального распределения (кривая 1) и плотности распределения Стьюдента (кривая 2).

 

 
 

Рис. 3.7

При плотность распределения Стьюдента стремится к плотности стандартной нормальной случайной величины.

На практике, как правило, используется не плотность вероятности, а квантиль распределения. Напомним, что квантилью порядка (или уровня) непрерывной случайной величины называется такое ее значение , которое удовлетворяет равенству ,

где - функция распределения, а - заданное значение вероятности. Рис.3.8 поясняет понятие квантили порядка .

 

 
 

Рис. 3.8

 

Следующая теорема устанавливает свойства основных выборочных характеристик, вычисленных по выборке, соответствующих нормальному распределению.

Теорема Фишера. Пусть - случайная выборка из генеральной совокупности , тогда выборочное среднее и несмещенная выборочная дисперсия независимы, и при этом

1) случайная величина имеет распределение ;

2) случайная величина имеет распределение ;

3) случайная величина имеет распределение .

Доказательство теоремы приведено в [2].



Поделиться:


Последнее изменение этой страницы: 2016-12-15; просмотров: 337; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.24.134 (0.007 с.)