ТОП 10:

Т.о. образуется определенная пара АК и т-РНК.



Живые клетки содержат по 20 синтетаз по 1-й на каждую АК, число т-РНК больше. Например для гли и лиз открыто по 4 разных т-РНК, для сер – 5 т-РНК.

Молекулы т-РНК являются молекулами адапторами, т.е. посредниками, при помощи которых АК переносятся и включаются в определенном порядке в растущую полипептидную цепь. Образовавшиеся соединения т-РНК и АК связываются с рибосомой в которой и происходит синтез белка. Структура синтезируемого белка определяется молекулярной структурой ДНК, содержащейся в клеточном ядре. В ДНК зашифрована последовательность АК-х остатков белковой молекулы.

Передача этой информации зашифрованной в ДНК осуществляется за счет м-РНК, за счет комплементарности пуриновых и пиримидиновых оснований нуклеиновых кислот.

Специфическая структура синтезируемого в рибосоме белка определяется именно молекулярной структурой м-РНК.

В молекуле м-РНК имеется генетический код для каждой АК.

КОД – это триплет нуклеотидов, который называется кодоном. Большинство АК кодируется несколькими кодонами. Это явление называется вырожденность кодона. Только мет и три имеют по одному кодону.

Вырожденность генетического кода способствует совершенствованию генома, т.к. в процессе мутации могут поступать различные АК-е замены, наиболее ценные из которых отбираются в процессе эволюции.

Всего известно 64 кодона, из которых 61 используется для кодирования АК, а 3 – УАА, УАГ, УГА (стоп-кодоны) – обозначают терминацию ППЦ, т.е. является сигналами окончания синтеза белковой молекулы.

Синтез белка начинается с N-конца и завершается С-концом белковой молекулы.

Процесс образования пептидной цепи можно разделить на 3 стадии:

- инициация (начало синтеза)

- элонгация (удлинение полипептидной цепи)

- терминация (окончание синтеза)

I стадия ИНИЦИАЦИЯ ( в эукариотах).

Сначала образуется инициаторный комплекс рибосома (80S)-м-РНК-мет-т-РНК

Первой АК при сборке любого белка является мет. Генетическим сигналом инициации является метиониновая т-РНК. Они образуют комплекс инициации:

S-м-РНК-мет-т-РНК

Для его образования используется ГТФ и белковые факторы инициации. Затем 60S-субъединица подсоединяется к этому комплексу и образуется инициаторный комплекс

S-м-РНК-мет-т-РНК

На этом этапе происходит гидролиз связанного ГТФ. В образовании конечного комплекса инициации участвует 8 белковых факторов инициации.

Молекула мет–т-РНК занимает пептидильный (Р) участок рибосомы. Второй уасток на рибосоме для связывания молекулы т-РНК аминоацильный (А) участок еще пуст.

Мет-т-РНК располагается таким образом, что антикодон спаривается с инициаторным кодоном АУГ в м-РНК + 40S-субчастица + мет-т-РНК + ГТФ + 8 факторов инициации.

Мет

- АУГ – м-РНК

40S-комплекс инициации

ГТФ

60 S Н2О

ГДФ + Ф

Мет

80S-комплекс инициации

АУГ

 

Т.о. стадия инициации синтеза белка это

1. образование 40S-комплекса инициации

2. образование 80S-комплекса инициации

 

II стадия ЭЛОНГАЦИИ ( включает 3 этапа)

1. связывание аминоацил-т-РНК (узнавание кодона)

2. образование пептидной связи

3. транслокация (перемещение рибосомы относительно м-РНК)

мет мет арг

Р-уч. А-уч фактор элонгации ЕF1, доставляет аминоацил-т-РНК

   

АУГ-ЦГА-ГЦУ-м- РНК АУГ-ЦГА-ГЦУ

ГТФ ГДФ+Ф

Пептидилтрансфераза

катализирует образование пептидной связи арг-мет

мет свободный мет арг

Р-уч. А-уч фактор транслокации

   

АУГ-ЦГА-ГЦУ АУГ-ЦГА-ГЦУ

ГДФ+Ф ГТФ

 

1. Цикл начинается с введения аминоацил–т-РНК в пустой А-участок рибосомы. В зависимости от того, какой кодон м-РНК находится в А-участке выбирается определенная разновидность т-РНК. Комплиментарная аминоацил-т-РНК оставляется в А-участок фактором элонгации ЕF1. Когда аминоацил-т-РНК занимает правильное положение на рибосоме происходит гидролиз 1 молекулы ГТФ.

2. Т.о. имеется комплекс, в котором аминоацил-т-РНК занимает А-участок, а мет-т-РНК занимает Р-участок. Все готово к образованию пептидной связи. Эту реакцию катализирует пептидилтрансфераза, входящая в состав 60S-субъединицы.

Активированная мет-т-РНК с Р-участка переносится на амино-группу аминоацил-т-РНК в А-участок, образуя дипептид т-РНК.

После этого под действием фактора элонгации – транслоказы происходит сдвиг рибососмы по м-РНК на 3 нуклеотида, используя энергию ГТФ. В А-участке оказывается следующий кодон или триплет нуклеотидов, характерный для определенной АК. Дальнейшее удлинение цепи происходит путем многократного повторения этих процессов. Скорость элонгации довольно велика: пептид из 100 АК образуется ≈ за 2 мин. Остаток мет может отщепляться в ходе элонгации от цепи под действием специфической пептидгидролазы, а может и сохраниться в некоторых белках.

 

III стадия ТЕРМИНАЦИЯ. Удлинение пептидной цепи продолжается до тех пор пока А-участок не окажется занятым одним из стоп-кодонов УАА, УАГ, УГА. В этом случае при участии факторов терминации происходит гидролитическое взаимодействие между пептидом и последней т-РНК, а в цитоплазму высвобождается готовый белок.

В результате трансляции не всегда образуется функционально активный белок. Во многих случаях необходимы дополнительные пострансляционные изменения.

 

Принципиальная схема биосинтеза белка (по А.С. Спирину).

 

ЛЕКЦИЯ 6

ФЕРМЕНТЫ

Ферменты, или энзимы – это белковой природы, образующиеся и функционирующие во всех живых организмах. Слово фермент происходит от лат. fermentum – закваска, другое название ферментов – энзимы от греч. en zyme – в дрожжах.

Впервые ферментативные процессы были открыты в бродильном производстве. Современная ферментология или энзимология– это наука о ферментах, их структурной организации. Она решает задачи изучения механизмов действия ферментов, путей регуляции ферментной активности. Такой интерес к биокатализаторам не случаен. Ферменты – это важнейшие компоненты клетки, без них невозможны синтез, распад и взаимопревращения в живых организмах. Через ферментный аппарат и регуляцию его активности происходит и регуляция скорости метаболических реакций. Изучение важно для биологии, медицины, фармации, многих областей народного хозяйства. Установлено, что многие заболевания человека связаны с нарушением деятельности ферментов, целый ряд ферментов является лекарственными препаратами.

Общие и специфические свойства ферментов.

Являясь катализаторами, то есть веществами, ускоряющими реакции, ферменты имеют ряд общих свойств с химическими небиологическими катализаторами.

1. Ферменты и входят в состав конечных Р и выходят из реакции в неизменном виде, они не расходуются в процессе катализа.

2. Ферменты не могут возбудить реакций, противоречащим законам термодинамики, они ускоряют только те реакции, которые могут протекать и без них.

3. Ферменты, как правило, не смещают положения равновесия реакции, а лишь ускоряют его достижение.

Вместе с тем ферменты обладают и специфическими свойствами:

1. По химическому строению ферменты являются белками (>99,9).

2. Эффективность ферментов на несколько порядков выше, чем небиологических катализаторов.

Например: H2O2 ® H2O + ½ O2­

а) если реакция протекает без катализатора, то Еа = 75,7 кдж/моль, пузырьки О2 почти не видны;

б) если прибавить катализатор небиологический то Еа = 54,1 кдж/моль, пузырьки отчетливо видны;

в) если прибавить биологический катализатор каталазу, то Еа = 18 кдж/моль, раствор просто «кипит».

3. Высокая специфичность – каждый фермент катализирует одну единственную реакцию или одну группу реакций, тогда как неорганические катализаторы действуют при различных типах реакций.

4. Ферменты катализируют реакции в «мягких» условиях: при нормальном Р, рН = 7,0. Для неорганических катализаторов присуща необходимость экстремальных значений рН, нагревание до очень высоких температур.

Химическая природа и строение ферментов.

Важным доказательством белковой природы ферментов явились работы Пастера (инактивация ферментов брожения при кипячении), Павлова (доказал белковую природу пепсина – фермента желудочного сока) и т.д.

1) важный признак белковой природы ферментов – их большая Mr. Например, у ДГ Mr = 4 ´106; 4,8 ´105 и т.д.

2) растворы ферментов имеют коллоидный характер – они не проходят через полунепроницаемую мембрану, осаждаются из растворов теми же реактивами, что и белки;

3) ферменты денатурируют и теряют свою активность под влиянием высокой температуры, УЗ, сильных щелочей и других факторов;

4) ферменты, как и белки, обладают амфотерными свойствами, электрофоретической подвижностью и рI.

5) как и белки, ферменты обладают высокой специфичностью;

6) наконец, прямым доказательством белковой природы ферментов явился искусственный синтез ферментов (рибонуклеаза, лизоцим), которые не отличаются по свойствам и биологической активности от природных аналогов.

Ферменты
простые белки сложные белки
состоят только из ППЦ состоят из ППЦ + небелковый компонент
(гидролитические ферменты – пепсин, трипсин, уреаза и др.) или ферменты–протеины (ацетил КоА, лактат ДГ и т.д.) или ферменты–протеиды

В ферментах-протеидах белковая часть называется апоферментом, а небелковая – простетической группой. Общее название сложных ферментов холофермент.

Если простетическая группа слабо связана с белковой частью и легко диссоциирует, она называется коферментом. Кофермент может соединяться с разными белками, и именно белковая часть определяет специфичность действия сложных ферментов. Вместе с тем, без кофермента сложный фермент не может функционировать, так как кофермент, как правило, непосредственно контактирует с субстратом (S) и служит в качестве переносчика ē, атомов или группы атомов.

Кофакторы, или коферменты это:

1) ионы Me – Mg2+, Ca2+, Cu2+, Mn2+ b lh/$

2) витамины и их фосфорные эфиры – витамин Н (биотин)(в составе коферментов карбоксилирования), липоевая, фолиевая кислоты, В1 и др.;

3) мононуклеотиды ФМН, АТФ, ГТФ и т.д.;

4) большая часть коферментов – это динуклеотиды НАД, НАДФ, HS-KoA и др.

При гиповитаминозах и авитаминозах недостаток витаминов ослабляет биосинтез многих ферментов и вызывает гипокоферментоз. Коферменты выполняют также важную роль в стабилизации и охране апоферментов. Последние без коферментов скорее разрушаются протеолитическими ферментами.

Таким образом, сами по себе ни коферменты, ни апоферменты каталитической активностью не обладают, а только в комплексе друг с другом.

Молекулы S-в чаще всего имеют небольшие размеры по сравнению с молекулами ферментов, поэтому при образовании Е-S-го комплекса в контакт с S вступает ограниченная часть аминокислот ППЦ, которая называется активным центром (АЦФ). У Е-протеидов в состав АЦФ входят также и простетические группы.

Таким образом, активный центр ферментаэто уникальная комбинация аминокислотных остатков, обеспечивающих непосредственное взаимодействие Е и S и прямое участие в акте катализа.

АЦФ
связывающий центр каталитический центр
участок, где происходит связывание S и Е – это контактная или «якорная» площадка участок, где происходит превращение S после его связывания

При сближении Е и S и образовании ЕS-комплекса нуклеофильные и электрофильные группы АЦФ, отдавая или принимая ē-ны, тем самым как бы «расшатывают» электронную структуру S, активируя его и ускоряя химическую реакцию. Есть ферменты, имеющие несколько АЦФ – уреаза–3; алкоголь ДГ–4; ацетилхолингетераза – 25-30 АЦФ у разных животных.

Аллостерические центры ферментов.

Кроме АЦФ, у ферментов имеются и аллостерические ( греч. allos – другой) или инопространственные центры. Это место воздействия на ферменты разных регуляторных факторов. Взаимосвязь между АЦФ и АЛЦФ называется аллостерическими взаимодействиями. Важная особенность АЛЦФ – их более высокая по сравнению с АЦФ чувствительность к различным воздействиям.

Например, при повышении температуры и применении рН раньше затормаживается функция АЛЦФ. В частности, при повышении температуры аллостерический центр гексокиназы теряет чувствительность к регуляторному воздействию инсулина и глюкокортикоидов, а функциональная активность ферментов сохраняется и продолжает фосфорилировать глюкозу за счет АТФ.

Регуляторное воздействие на аллостерический центр оказывают: различные метаболиты ферментативных реакций, гормоны и продукты их обмена, медиаторы НС и т.д. Они называются эффекторами или модификаторами. Их молекулы не сходны с молекулами S-в.

Связываясь с аллостерическим центром, эффекторы изменяют ТС и ЧС ферментов, тем самым изменяют конфигурацию АЦФ, что приводит к повышению (активированию) или понижению (ингибированию) ферментативной активности.

Изоферменты – это молекулярные формы ферментов, возникающие вследствие генетических различий в ПС ферментного белка. Это группа ферментов, которые присутствуют внутри одного вида (ЛДГ) или внутри одной клетки (аминотрансферазы), имеют одинаковый механизм действия, но отличаются по некоторым физико-химическим свойствам: электрофоретической подвижности, иммунобиологическим реакциям. Например, существует в виде пяти изоферментов. Хотя они катализируют одну и ту же реакцию, отличаются по своей Кт. У них одинаковая Mr (134.000) и по 4 ППЦ с Mr 33.500. Пять изоферментов соответствую пяти различным комбинациям двух разных типов ППЦ, названных M – (muscle) и H– (heart) цепями. Изофермент М4 – находится в мышечной ткани, содержит идентичные 4М-цепи; Н4 – находится в сердце, содержит идентичные 4Н-цепи. Остальные три изофермента – это различные сочетания М3Н; М2Н2; МН3. Два типа цепей – М и Н, кодируются двумя различными генами, сочетание ППЦ находится под генетическим контролем. Наличие изоферментов и изменение их соотношения в организме – один из способов регуляции ферментов.







Последнее изменение этой страницы: 2016-12-14; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 100.26.182.28 (0.015 с.)