Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Эластиновые волокна, 3 – клетки.Содержание книги
Поиск на нашем сайте
Основу структуры коллагеновых волокон составляют элементарные волоконца, образованные протофибриллами диаметром около 0,05 мкм, которые составляют фибриллы с поперечником 0,3...0,5 мкм. Из фибрилл образованы первичные волокна (поперечник около 10 мкм), а затем сложные волокна — пучки, покрытые тончайшей оболочкой. В пучках фибриллы связаны аморфным веществом, растворяющимся в щелочах и разрушаю щимся под действием протеолитических ферментов. Коллагеновые волокна содержат около 37 % сухого остатка, в составе которого до 35 % органических веществ, преимущественно коллагена. В отличие от коллагеновых волокон эластиновые обладают микроскопически однородной структурой. Однако под действием эластазы они распадаются на фибриллы. Их толщина различна: некоторые едва видны под микроскопом, другие по размеру приближаются к коллагеновым волокнам средней величины. Прочность эластиновых волокон меньше прочности коллагеновых: их сопротивление на разрыв 100...200 МПа. В составе эластиновых волокон около 42 % сухого остатка, из которого 0,2 % приходятся на долю минеральных веществ. В составе органических веществ около 32 % эластина и немного коллагена. Высокая прочность коллагеновых и упругость эластиновых волокон обусловливают прочностные свойства соединительной ткани в целом, которые значительно превосходят такие же свойства мышечной ткани. Если сопротивление резанию различных мускулов колеблется в пределах 0,013...0,086 МПа, то для соединительной ткани оно составляет 0,27...0,40 МПа. Химический состав соединительной ткани различен и зависит главным образом от соотношения в ней количества коллагеновых и эластиновых волокон. В некоторых видах соединительной ткани (рыхлая соединительная ткань, сухожилия) преобладает коллаген, и в таких тканях несколько больше воды. Другие виды соединительной ткани содержат больше эластина и беднее водой. Так, в состав сухожилий входит до 32 % коллагена и лишь 0,7 % эластина, а в состав вы иной связки — до 32 % эластина и лишь 1,6 % коллагена. Свойства, пищевая ценность и промышленное значение соединительной ткани определяются свойствами коллагена и эластина и их количественным соотношением. Коллаген неоднороден. Его элементарные частицы — коллагеновые протофибриллы — представляют собой систему колластроминовых нитей и проколлагеновой обкладки. В проколлагеновой обкладке упорядоченно расположен углеводный крмпонент коллагена — мукополисахарид (гиалуроновая кислота), обусловливающий поперечную исчерченность фибрилл. Даже в очищенном препарате коллагена обнаруживается до 0,65 % углеводов. Таким образом, в коллагеновых волокнах содержится, по меньшей мере, два белка и углеводный компонент, которые, будучи связанными между собой, определяют своеобразие свойств коллагеновых волокон: их прочность, эластичность, устойчивость к растворителям, нагреванию в воде и действию протеолитических ферментов. Эти свойства зависят от того, какая доля мукополисахарида прочно или лабильно связана с белковой частью. Чем больше углеводного компонента связано прочно, тем отчетливее выражены эти свойства.
Мукополисахариды входят также в состав межуточного вещества, цементирующего коллагеновые фибриллы в коллагеновые волокна. Мукополисахариды растворимы в щелочах. В дальнейшем под словом «коллаген» подразумевается комплекс, образованный колластромином и проколлагеном. В зависимости от анатомического происхождения соединительной ткани различают коллаген волокнистый (сухожилия и кожа), гиалиновый (кость), хондриновый (хрящи). Аминокислотный состав коллагенов разного происхождения несколько различается, но во всех случаях в коллагене очень мало метионина и отсутствует триптофан. Нативный коллаген нерастворим в воде, но набухает в ней. Он медленно переваривается пепсином и почти не переваривается трипсином и панкреатическим соком, но расщепляется коллагеназой на цепочки параллельно оси волокна. При нагреве коллагена до 60...70 °С и тщательной механической деструкции переваривающее действие пепсина усиливается. Таким образом, коллаген, хотя и сравнительно медленно, все же может усваиваться организмом, который выделят его больше, чем получает с пищей. В умеренных количествах коллаген сберегает в пище полноценные белки и выполняет роль пищевых волокон. На рис. 11.7 приведена схема строения участка коллагеновой частицы, в которой полипептидные цепочки взаимно связаны водородными и солевыми связями (мостиками).
При нагревании препаратов коллагена с водой до 58...65 °С коллагеновые волокна резко (примерно на 1/3) сокращаются. При этом, по-видимому, разрушаются только связи, удерживающие полипептидные цепочки в направлении продольной оси структуры коллагена. Происходят неупорядоченное изгибание и скручивание полипептидных цепей, а также разрыв части преимущественно водородных связей в молекуле коллагена. Это явление называется свариванием коллагена. Сваренный коллаген более доступен действию пепсина. Его прочность резко снижается: например, сопротивление резанию соединительной ткани с большим содержанием коллагена падает до 0,067 МПа, то есть в 6 раз. При дальнейшем осторожном нагреве коллагена полностью разрываются водородные и солевые связи, удерживающие полипептидные цепочки в структуре коллагена, без заметного изменения связей внутри цепей. Этот процесс, протекающий с участием воды, известен под названием пептизация коллагена. Продукт пептизации, состоящий из нескольких связанных с друг с другом полипептидных цепочек, называется глютином. Практически одновременно с образованием глютина происходит гидролитический распад части полипептидных цепочек на более мелкие звенья, в совокупности образующие полидисперсный продукт гидролиза глютина — смесь желатоз (глютоз). Тщательное механическое разрушение коллагена в воде приводит к нарушению структуры коллагена по плоскостям расположения водородных и солевых связей. Происходи разволокнение коллагена на полипептидные цепочки и образуется продукт сходный с желатином. Эластин не содержит триптофана, и в нем очень мало метионина и гистидина. Он почти не переваривается пепсином, медленно — трипсином и сравнительно легко — эластазой. Он очень устойчив к действию химических реагентов, не изменяется в растворах кислот и щелочей, выдерживает длительный нагрев при 125 0С. Следовательно, эластин практически не имеет какой-либо пищевое ценности. Жировая ткань Жировая ткань представляет собой разновидность рыхлой соединительной ткани, в клетках которой содержится значительное количество нейтрального жира, В соединительной ткани они располагаются в одиночку или небольшими группами, в жировой — скапливаются в большие массы. Размеры жировых клеток достигают 120 мкм. Они обладают обычными для клеток структурными элементами, но их центральная часть заполнена жировой каплей, а протоплазма и ядро оттеснены к периферии (рис. 11.8). Жировые капли представляют собой сложную дисперсионную систему, образованную жиром и обводненной фазой. Наряду с жирами в составе жировой ткани содержатся различные липоиды (преимущественно фосфатиды). Но количество их не превышает долей процента. В соответствии с распределением соединительной ткани в мясе различают внутримышечную, межмышечную и поверхностную жировую ткань. В мясе упитанных животных (крупного рогатого скота и свиней) жировая ткань как бы прослаивает мышечную, образуя на разрезе так называемую мраморность.
Рис. 11.8. Жировая ткань: 1 — жировая клетка; 2 — жировая капля; 3 — протоплазма; 4 — волокна соединительной ткани
Пищевая ценность жировой ткани определяется свойствами содержащихся в ней жиров и в известной степени пищевой ценностью липоидов.
Природные жиры скота и птицы представляют собой сложные смеси, главными компонентами которых являются глицериды, т. е. сложные эфиры глицерина и жирных кислот, преимущественно триглицериды типа
Здесь R1, R2, R3 — радикалы жирных, главным образом высших кислот, свойства и расположение в структуре молекулы которых решающим образом влияют на специфические особенности различных жиров и их пищевую ценность. Содержание в жирах ди- и моноглицеридов незначительно и непостоянно. Биологическая ценность жиров обусловлена, во-первых, тем, что они служат носителями больших запасов энергии. Калорийность жиров превышает калорийность белков и углеводов и достигает 39 кДж на 1 г жира. В этом отношении животные жиры независимо от содержания в их составе радикалов насыщенных и ненасыщенных кислот мало отличаются друг от друга. Во-вторых, жиры необходимы для всасывания в кишечнике жирорастворимых витаминов, поэтому при недостаточном их количестве в пище наблюдаются авитаминозы. Животные жиры и сами являются носителями небольших количеств некоторых жирорастворимых витаминов (A, D и Е). И, наконец, биологическая ценность жиров зависит от содержания в них радикалов высоконенасыщенных жирных кислот с двумя и более двойными связями, разделенными метиленовым звеном с числом углеродных атомов 18 и более. Эти кислоты не синтезируются организмом в необходимых количествах. К ним относятся линоленовая (две двойные связи), линолевая (три двойные связи) и арахидоновая (четыре двойные связи). Таб.11.5. Содержание радикалов ненасыщенных жирных кислот в животных жирах (%)
Жиры, содержащие большее количество радикалов ненасыщенных кислот, в большей степени способствуют усвоению организмом белкового азота. Характеристика биологической ценности отдельных видов животных жиров, входящих в состав мяса, приведена в табл. 11.5.
Фосфатиды внутримышечной жировой ткани содержат значительно больше радикалов высоконепредельных жирных кислот, чем триглицериды. В процессе усвоения пищи около 20...25 % жира гидролизу-ется под действием панкреатического сока. Остальной жир всасывается стенками кишечника в нейтральном состоянии. Расщепление жира и его всасывание требуют эмульгирования его в водной среде до достижения частицами размера менее 0,5 мкм с отрицательным зарядом, поэтому усвояемость жиров зависит от их способности образовывать эмульсии в водной среде, что, в свою очередь, связано с их температурой плавления. Жиры с температурой плавления ниже температуры тела хорошо усваиваются, так как, попадая в организм, они целиком переходят в жидкое состояние и легко эмульгируются. При большом содержании жира в пище он тормозит отделение желудочного сока и препятствует перевариванию белков до перехода в кишечник. И в этом случае большое значение имеет способность жира эмульгироваться. Таким образом, количество и свойства жира, содержащегося в пище, влияют на усвояемость белковых веществ. Вместе с тем жир, возбуждая панкреатическую железу, обеспечивает выделение панкреатического сока, необходимого для переваривания не только самого жира, но и белковых веществ. Кости Костная ткань отличается сильноразвитым межклеточным (основным) веществом, состоящим из органической, неорганической частей и воды. В основном веществе расположены костные клетки и проходят кровеносные сосуды. В кости различают наружный слой, состоящий из так называемого плотного вещества, и внутренний, менее плотный, состоящий из губчатого вещества (рис. 11.9). В костях сложного профиля и кулачках трубчатой кости плотный слой незначителен. В плоских костях он намного толще и иногда превосходит губчатый слой. Трубка трубчатой кости почти целиком состоит из плотного вещества. Плотное и губчатое вещества построены из окостеневших пластинок, образованных небольшими пучками коллагеновых фибрилл. В губчатом веществе пластины расположены менее упорядочение и образуют многочисленные мельчайшие поры, в которых находится красный костный мозг. Снаружи кость покрыта соединительнотканной оболочкой — надкостницей, а поверхность кулачков — хрящевым слоем. Главный органический компонент основного вещества кости — коллаген (оссеин), составляющий 24...34 % массы сухой обезжиренной кости. Основное вещество содержит от 30 до 65 % минеральных составных частей. Около 70 % минеральных веществ приходится на фосфорнокислый кальций и около 10 % — на углекислый кальций.
Рис. 11.9. Разрез трубчатой кости: 1 — диафиз (трубка); 2 — эпифиз (кулачок); 3 — полость трубки; 4 — плотное вещество; 5 — губчатое вещество
В соответствии с особенностями строения и состава различных костей, характером использования и особенностями технологической обработки их подразделяют на три группы: трубчатые кости (бедренная, берцовая, плечевая, предплечье, пястная, плюсневая); паспортная кость (плоские кости) и рядовая кость (кости сложного профиля и кулачки трубчатой кости).
Средняя часть трубчатой кости — трубка, или диафиз (см. рис. 11.9), состоящая в основном из плотного вещества, заполнена костным мозгом (около 17...22 % массы трубки без кулачков). Сама костная ткань трубки богата коллагеном, но содержит мало жира. Жир в этой части кости находится преимущественно в составе костного мозга, содержащего 84...95 % липидов, 1,2...2,4 — белка, 4... 12 % воды. В липидной фракции около 99,5 % жира, 0,19 — фосфатидов, 0,31 % холестерина. Соотношение количеств основных жирных кислот в жирах и фосфатидах желтого костного мозга примерно следующее: пальмитиновая — 7,8 %, стеариновая — 14,2, олеиновая — 78 %. Кулачки, или эпифизы, образованы в основном губчатой тканью и лишь на поверхности состоят из плотной ткани. Мельчайшие полоски губчатой ткани заполнены красным мозгом (жировыми клетками, содержащими около 92 % липидов, в составе которых около 99,5 % жира, 0,21 — фосфатидов, 0,28 % холестерина). Соотношение количеств основных жирных кислот в составе красного костного мозга примерно следующее: пальмитиновой — 16,4 %, стеариновой — 35,2, олеиновой — 48,4 %. Паспортная кость состоит главным образом из плотной ткани. Внутри имеется небольшой слой губчатой ткани. Плотная ткань богата коллагеном (около 93 % к общему количеству белков) и поэтому служит хорошим сырьем для производства желатина. К паспортной кости относятся плоские кости скелета: кости черепа, челюсти, кости таза, лопатки, опиленные ребра, а также отходы трубчатой кости. Строение рядовой кости аналогично строению эпифизов; это кости сложной конфигурации: позвонки, запястья, предплюсны, путовой сустав и пальцы, носовые раковины черепа. Содержание жира в костях неодинаково, иногда оно довольно велико (табл. 11.6). Состав кости заметно зависит от упитанности скота: с повышением упитанности содержание жира и минеральных веществ несколько увеличивается и уменьшается содержание воды. В позвонках это же наблюдается в направлении от головы к задней части туши. В головке ребер больше жира и воды и меньше минеральных веществ, чем в их теле. Трубчатые кости задних конечностей содержат несколько больше жира и коллагена, чем трубчатые кости передних конечностей. Содержание коллагена в кости зависит от вида скота, его пола, возраста и упитанности. Большое значение имеет анатомическое происхождение кости. Плотное вещество кости богаче коллагеном, чем ее губчатая кость, поэтому в костях, где плотная ткань преобладает, коллагена больше, а других белковых веществ меньше. Пищевое и промышленное значение костной ткани вытекает из ее свойств и химического состава. Диафиз трубчатой кости — отличное сырье для поделок. Остальная кость для этих целей непригодна. В составе кости от 10 до 25 % жира, большая часть которого может быть выделена вываркой в воде или другим способом. Коллаген кости также может быть извлечен горячей водой в виде глютина.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-28; просмотров: 762; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.157.233 (0.013 с.) |