Применение статистических отображений.



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Применение статистических отображений.



Статистические отображения позволили расширить возможности ряда дисциплин, возникших на базе аналитических методов: так возникли статистическая радиотехника, разделы теории игр, теория массового обслуживания, теория информации и т.д.

Расширение возможностей отображения сложных систем и процессов по сравнению с аналитическими методами можно объяснить тем, что при применении статистических методов процесс постановки задачи как бы частично заменяется статистическими исследованиями, позволяющими не выясняя все детерминированные связи между изучаемыми событиями и учитываемыми компонентами сложных систем, на основе выборочного исследования получать статистические закономерности и распространять их на поведение всей системы.

Однако не все явления или процессы могут быть описаны статистическими закономерностями, не всегда может быть доказана правомерность применения такой закономерности.

В этих случаях следует рассматривать другие методы представления систем.

 

 

Кучеров А.Ю., 99-ИС-21б, 2002 г.

Теоретико-множественные представления.

 

 

Основная терминология.

 

Теоретико-множественные представления базируются на двух основных понятиях: множество и отношения на множествах.

Понятие «множество» относится к числу интуитивно постигаемых понятий, которым дать точное определение. Это понятие эквивалентно понятиям «совокупность», «собрание», «коллекция», «семейство», «класс» и т.д.

Основатель теории множеств Георг Кантор определял множество как «многое, мыслимое нами как единое».

 

Множества могут задаваться следующими способами:

1.Списком, перечислением (экстенсиональный способ). Например:

A = {a1, a2, ai, …,an},

тогда факт вхождения элемента в множество записывают знаком «Î»:

ai ÎA – «элемент ai принадлежит множеству A» или

«элемент ai – элемент множества A»,

а если элемент не принадлежит множеству A, то пишут:

сi Ï A или сi A.

2. Путем указания некоторого характеристического свойства (интенсиональный способ).

Например:

– «Множество натуральных чисел»

– «Множество запросов»

– «Множество дескрипторов, используемых в данном тексте» и т.д.

 

Основным принципом, положенным в основу теории множеств, является принцип перехода от одного способа задания множества к другому – так называемый принцип свертывания.

В множествах могут быть выделены подмножества:

 
 

 


 


Записывают B Ì A –все элементы подмножества B являются одновременно элементами множества A, т.е. если:

bi Î B, ∀ i= и bi Î A, ∀ i= , то B Ì A.

Важным понятием является понятие «пустое множество». Это множество, в котором в данный момент нет ни одного элемента. Условно пустое множество обозначается «∅».

Фундаментом при создании теории множеств явились язык классической математики и язык алгебры логики, наиболее применимой из которых является бинарная алгебра Буля.

При проведении операций над множествами удобно пользоваться наглядным представлением операций и их свойств – строить фигуры, называемые диаграммами Эйлера – Венна.

В зависимости от сложности отображаемой системы язык, ее описывающий, видоизменяется и дополняется новыми понятиями и символами. Вводятся дополнительные характеристики отношений:

 

Обозначение Смысл
Связь
Направленность отношения
G

Сила отношения
G

Характер отношения

 

Потребовалось введение понятий гомоморфизма, изоморфизма и др., позволяющих отображать одну множественную модель на другую.

ИЗОМОРФИЗМ (от изо... и греч. morphe — форма), понятие современной математики, уточняющее широко распространенное понятие аналогии, модели. Изоморфизм — соответствие (отношение) между объектами, выражающее тождество их структуры (строения).

ГОМОМОРФИЗМ (от гомо... и греч. morphe — вид, форма), понятие современной математики, обобщающее понятие изоморфизма.

 

 



Последнее изменение этой страницы: 2016-12-28; просмотров: 81; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.227.97.219 (0.007 с.)