![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Количественные методы системного анализаСодержание книги
Поиск на нашем сайте
Аналитические методы представления систем (Кучеров А.)
Аналитическими методами названы здесь методы, в которых ряд свойств реальной многомерной, многослойной, многосвязной системы отображается в n -мерном пространстве представления одной единственной точкой, совершающей какое-то движение.
Это отображение осуществляется либо с помощью функции f[Sx], либо посредством оператора (функционала) Ф[Sx]. Можно также две или более систем отображать точками и рассматривать взаимодействие этих точек, каждая из которых в свою очередь может совершать какое-то движение (иметь своё поведение). Движение (поведение) точек и их взаимодействие описывается аналитическими зависимостями, которые отображают закономерности поведения систем или связи между ними.
Основная терминология.
Основу понятийного (терминологического) аппарата аналитических представлений составляют: привычные понятия элементарной математики (величина, формула, функция, уравнение, система уравнений, логарифм, логарифмическая функция и т.д.), понятия высшей математики (производная, дифференциал, интеграл, системы дифференциальных, интегро-дифференциальных уравнений, функционал и др.), понятия новых разделов современной математики, которые появились в связи с задачами поиска наилучших (оптимальных) решений, такие как критерий функционирования, критерий эффективности, критериальная или целевая функция и т.д. Основные из названных понятий удобно пояснить на примере элементарной задачи, которую приходится почти повседневно решать каждому человеку. Чтобы достичь какого-то пункта города (п.А) за ограниченное время требуется решить задачу пути (маршрута) и вида транспорта. Эту задачу позволяет решить закон физики, известный из школы (как правило, для приближенных подсчетов пользуются законом равномерного прямолинейного движения): t=L/v, где L – длина пути, v – скорость движения, t – время, за которое нужно достичь п.А. Варьируя сочетания L и v, (часто не обязательно оценивая точно их величины), мы выбираем наиболее приемлемые средства достижения желаемой цели (п.А), не задумываясь над тем, что анализируем функцию t=f(L,v), в которой один из членов, от которых зависит значение t, может быть постоянным (например L), а другой – переменным (v), а могут быть переменным оба аргумента. Запись вида t=f(L,v) применяется, если не известен закон взаимосвязи между L, v и t. Если же закон известен, то записывают зависимость, отражающую этот закон (например, t=L/v).
Если в той же задаче помимо требование определенного t, добавляются дополнительные требование (например, “с наименьшими затратами”, “наиболее комфортно” и т.д.), то приведенное аналитическое выражение не позволяет решить задачу. В таких случаях понятия «функция» оказывается недостаточно. При решении задач, в которых нужно учитывать много компонентов и требований, удобно выделять понятия “цель”, “средства”, “критерий достижения цели” или “критерий оценки качества достижения цели”. В рассматриваемой задаче: цель – “достичь п.А”, средства – “путь” и “транспорт”, критерий оценки качества достижения цели – “время t”. В такой терминологии выражение, связывающее цель со средствами ее достижение, в различных источниках носит название: «критерий функционирования», «критерий эффективности», «критериальная функция», «целевая функция», «показатель эффективности» и т.д. При учете большего числа факторов, чем в рассматриваемом примере, выражения, связывающие цель и средства ее достижения, имеют более сложный (часто громоздкий) вид. При этом критерий может быть составным, например “максимум прибыли при определенных затратах”, “минимум времени при минимальных затратах” и т.д. Задачи, встречающиеся в информационной деятельности и при автоматизации информационных процессов, можно привести к задаче, подобной рассмотренной. Например, можно ставить вопрос о наилучшем способе организации эквивалентного обмена фондами между информационными службами, о расчете времени на индексирование и требуемых для этого штатов (или машинного времени при автоматизации этого процесса). Решением аналогичных задач занимаются программисты при решении вопросов организации информационных массивов в памяти ЭВМ, разработке оптимальных алгоритмов поиска информации и т.д. В решении подобных задач могут помочь математические и прикладные теории, базирующиеся на аналитических представлениях.
|
||||||||||||||||
Последнее изменение этой страницы: 2016-12-28; просмотров: 362; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.141.244 (0.007 с.) |