Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Реакция сверхчувствительности как форма апоптоза.Содержание книги
Поиск на нашем сайте
Сверхчувствительность — это защитная реакция растения в ответ на заражение патогенами, проявляющаяся в быстрой локальной гибели клеток растения и сопровождающаяся накоплением в погибших клетках токсических продуктов. Растение как бы жертвует своей частью ради спасения целого. РС может быть фенотипически различной, варьируя от гибели отдельной клетки до распространения некротических зон, сопровождающегося ограниченной колонизацией патогена. Кроме этого, появление РС зависит от окружающих условий и в частности может ослабевать при условии высокой влажности. Вместе с клетками растения погибает внедрившийся патоген. Клеточная смерть известна с момента открытия клетки. Мертвые клетки коры дуба были описаны первооткрывателем клетки Гуком в 1665 г. В XIX веке ученые описали смерть клеток как процесс. В XX веке были выделены две формы клеточной гибели у животных: апоптоз, или программируемая клеточная смерть, и некроз, или патологическая гибель клеток, сопровождающаяся воспалением. Это открытие сыграло важнейшую роль в развитии современных представлений о клеточной гибели и приблизило к пониманию конкретных механизмов гибели на клеточном уровне. В настоящее время программируемая клеточная гибель известна у широкого круга представителей разных систематических групп живых организмов: у животных, растений, грибов, микроорганизмов, включая прокариот. Апоптоз возник у прокариот, по всей видимости, как защита от вирусов или от повреждающего действия активных форм кислорода (АФК), т.е. как механизм выбраковки клеток с избыточной продукцией токсичных форм одноэлектронного восстановления кислорода. В ходе эволюции расширялись функции апоптоза. Гибель клеток имеет большое значение для эмбриогенеза, морфогенеза, дифференцировки, как отклик на неблагоприятные факторы среды, а также инструмент иммунного ответа. Широко известны примеры апоптоза у растений — развитие ксилемы, флоэмы, формообразование листьев, прорастание пыльцевой трубки (гибель клеток пестика на пути трубки),опадание листьев и созревание плодов. Исследования последних лет выявили много общего между апоптозом у животных и реакцией сверхчувствительности у растений. Морфологические изменения клеток при апоптозе и некрозе. Типичные признаки апоптоза у животных — это конденсация и дробление ядра, разрыв нити ДНК на олигонуклеосомные фрагменты, которые образуют "ДНК-лесенку" при электрофорезе, формирование апоптозных телец — мембранных структур, содержащих фрагменты ДНК. При этом цитоплазматическая мембрана остается интактной до образования апоптозных телец. Клетка, претерпевающая апоптоз, резко уменьшается в объеме, протопласт съёживается, а мембрана приобретает складчатость. Далее разрыхляется хроматин. Наблюдается увеличение уровня ядерного гетерохроматина и перемещение его к краям ядра. Ядерная ДНК разрывается на фрагменты длиной приблизительно 50 тысяч пар оснований. В дальнейшем такие фрагменты под действием Са2+-зависимой эндонуклеазы разрываются на олигонуклеосомные фрагменты длиною около 180 пар оснований. Апоптозные тельца с фрагментами ДНК мигрируют из центра клетки к ее периферии. Все признаки апоптоза у животных выявлены у растений при реакции сверхчувствительности. Разрезание ДНК на длинные фрагменты отмечалось при сверхчувствительном отклике растений в ответ на заражение вирусами, бактериями и грибами. В клетках зараженных растений при этом идентифицируются свободные З'-ОН концы, выявлена активация Са2+-за-висимой эндонуклеазы, обнаружены фрагменты ДНК длиной 50 тыс. пар оснований, а также олигонуклеосомные фрагменты, дающие характерную "ДНК-лесенку" при разгоне в агарозном геле. Для модельной системы томат – Alternaria alternata f.sp. lycopersici показано, что фрагментация ДНК с образованием олигонуклеосомных фрагментов происходит только в несовместимых комбинациях растение-патоген (то есть при воздействии авирулентных штаммов гриба, но не вирулентных). Кроме того, были обнаружены остаточные апоптозные тельца, мигрирующие к периферии клетки. У животных апоптозные везикулы поглощаются соседними или специализированными клетками, такими как макрофаги. У растений фагоцитозу препятствует клеточная стенка. При реакции сверхчувствительности плазмодесмы разрываются, а вокруг очага поражения образуется перидерма (вследствие приобретения здоровыми клетками меристематической активности). Поврежденная клеточная стенка либо полностью разрушается при участии гидролитических ферментов, действующих очень локально, либо укрепляется за счет целлюлозных утолщений, лигнификации, сшивки белков, отложения кремния. Упрочнение клеточной стенки замуровывает проникшего патогена внутри клетки и затрудняет проникновение новых патогенов. Важную роль в программируемой гибели клеток как животных, так и растений играют митохондрии. Под воздействием индукторов апоптоза резко снижается мембранный потенциал митохондрий. Деполяризация обусловлено увеличением проницаемости внутренней мембраны митохондрий вследствие образования гигантских пор. Их диаметр позволяет пересекать мембрану веществам с молекулярной массой 1,5 кДа и ниже. Митохондриальный матрикс набухает. Это вызывает разрыв наружной мембраны митохондрий. Следствие разрыва — высвобождение белков межмембранного пространства митохондрий, что является важным этапом апоптоза. Хлоропласты растений также могут принимать участие в непосредственном регулировании программируемой гибели растительных клеток при реакции сверхчувствительности: предполагается участие хлоропластов как источников АФК и координационного центра в гибели клеток растений при сверхчувствительном отклике. Высказываются предположения и о роли других мембранных структур, например мембраны вакуоли тонопласта, в запуске механизмов гибели растительных клеток. А что происходит с клеткой при некрозе? Объем клетки значительно увеличивается. Изменяется проницаемость цитоплазматической и внутриклеточных мембран. Цитоплазма вакуолизируется. Повреждается тонопласт. Органеллы набухают и разрушаются. В дальнейшем мембраны разрываются, происходит дезинтеграция клетки. Остатки органелл лизируются. Содержимое клетки попадает в межклеточное пространство.
При некрозе не происходит активирования какой-либо генетической программы. Апоптоз, напротив,— результат запуска определенной генетической программы. Обнаружены многочисленные позитивные и негативные регуляторные гены апоптоза. Эти гены могут непосредственно активировать апоптоз через индукторы, блокировать через репрессоры, изменять метаболизм растений, влиять на сигнальные молекулы, их рецепторы или непосредственна на другие гены. Области гомологии между последовательностями регуляторных генов апоптоза у животных и растений редки. Это указывает на то, что либо у растений эволюционировали свои генетические механизмы регуляции программируемой клеточной гибели, либо дивергенция генов зашла так далеко, что они уже не идентифицируются как гомологичные. Системная приобретенная устойчивость. Приобретенная устойчивость развивается в растениях после первичной инфекции; при этом окружающие ткани или отдаленные части растения становятся устойчивыми к последующему заражению. Этот тип устойчивости является неспецифическим; он эффективен по отношению к различным стрессам и повторному заражению растений, прежде всего по отношению к биотическим и абиотическим факторам, которые индуцируют некрозы клеток и тканей растений. О локальной приобретенной устойчивости первоначально упомянули Yarwood (1960) и Ross (1961) в отношении вирусной устойчивости. Системная приобретенная устойчивость была выявлена Ross (1961) для табака, зараженного вирусом табачной мозаики. Сейчас становится понятным, что системная приобретенная устойчивость эффективна в отношении, вероятно, только биотрофных патогенов. Ее развитие опосредовано салициловой кислотой, но молекулярные и биохимические детали этого явления пока плохо понятны. Более того, заражение растений некротрофными патогенами, вероятно, вообще не индуцирует системную приобретенную устойчивость, хотя для окончательного вывода необходимы дальнейшие исследования.
|
||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-13; просмотров: 314; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.218.219 (0.01 с.) |