Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Послідовність компонентів дихального ланцюга мітохондрій. Молекулярні комплекси внутрішніх мембран мітохондрій.Содержание книги
Поиск на нашем сайте
Дихальний ланцюг мітохондрій - сукупність молекулярних компонентів (ферментів, коферментів, додаткових електроно-транспортних білків), що здійснюють дегідрування органічних субстратів та послідовний перенос відновлювальних еквівалентів (протонів та електронів) на кисень через ряд проміжних переносників - транспортерів протонів та електронів. Окремі білки та небілкові переносники відновлювальних еквівалентів, які складають дихальний (електроно-транспортний) ланцюг, структурно об'єднані між собою в надмолекулярні мультиензимні комплекси, вбудовані в ліпідний матрикс внутрішніх мітохондріальних мембран, що створює стеричні умови, необхідні для ефективного перебігу окислювально-відновлювальних реакцій. До складу дихального (електроно- транспортного) ланцюга мітохондрій входять чотири білкові комплекси (комплекси І, II, III та IV), що функціонують як переносники протонів та електронів. До складу комплексів входять також залізо-сіркові білки, що містять іони негемового заліза (у вигляді FeS), асоційовані з флавопротеїнами або цитохромом b. Крім білкових комплексів, у функціонуванні електроно-транспортних ланцюгів беруть участь два рухомі переносники - убіхінон (коензим Q) та цитохром с. Комплекси дихального ланцюга: НАДН-коензим Q-редуктаза – ферментний комплекс (являє собою флавопротеїн, що містить ФМН), який окислює НАДН і передає відновлювані еквіваленти на коензим Q (убіхінон); у складі НАДН-коензим Q-редуктази НАДН-дегідрогеназа асоційована з FeS- білками (так званий комплекс І) Сукцинат-коензим Q-редуктаза – ферментний комплекс (ФАД-залежний флавопротеїн), який окислює сукцинат, відновлюючи коензим Q; до складу комплексу входить флавопротеїн сукцинатдегідрогеназа, асоційована з FeS-білком (комплекс ІІ) Коензим Q-цитохром с-редуктаза (убіхінолдегідрогеназа)-ферментний комплекс,що складається з цитохрому b, FeS-білка та цитохрому с1; ферментний комплекс транспортує електрони з відновленого коензиму Q (QH2) на цитохром с (комплекс ІІІ). Цитохром с-оксидаза – ферментний комплекс, що складється з цитохромів а та а3 (комплекс IV); комплекс здійснює кінцеву стадію біологічного окислення – відновлення електронами молекулярного кисню; він містить іони міді, як і інші оксидази. Білет 7 1.Специфічність ферментів. Ферменти є високоспецифічними каталізаторами, тобто діють, як правило, на структурно близькі субстрати, що мають певний хімічний зв’язок, структурно подібні радикали або функціональні групи. Проявом високої специфічності ферментів є їх стереоспецифічність, тобто здатність перетворювати тільки певні стереоізомери, наприклад L- або D-амінокислоти, D- або L-моносахариди Ферменти зазвичай проявляють високу специфічність по відношенню до своїх субстратів. Це досягається частковою комплементарністю форми, розподілу зарядів і гідрофобних областей на молекулі субстрату і в ділянці зв'язування субстрату на ферменті. Ферменти демонструють високий рівеньстереоспецифічності (просторової специфічності), регіоселективності (специфічності орієнтації) і хемоселективності (специфічності до хімічних груп). Модель «ключ-замок» Реалістичніша ситуація індукованої відповідності — «неправильні» субстрати дуже великі або дуже маленькі та не підходять до активного центруУ 1890 році Еміль Фішер припустив, що специфічність ферментів визначається точною відповідністю форми ферменту і субстрату. Таке припущення називається моделлю «ключ-замок». Фермент з'єднується з субстратом з утворенням короткоживучого фермент-субстратного комплексу. Проте, хоча ця модель пояснює високу специфічність ферментів, вона не пояснює явища стабілізації перехідного стану, який спостерігається на практиці. Модель індукованої відповідності У 1958 році американський дослідник Деніел Кошланд запропонував модифікацію моделі «ключ-замок». Ферменти, в основному, — не жорсткі, а гнучкі молекули. Активний центр ферменту може змінити конформацію після зв'язування з ним субстрату. Бічні групи амінокислот активного центру займають таке положення, яке дозволяє ферменту виконувати свою каталітичну функцію. В деяких випадках молекула субстрату також міняє конформацію після скріплення в активному центрі. На відміну від моделі «ключ-замок», модель індукованої відповідності пояснює не тільки специфічність ферментів, але і стабілізаціюперехідногоHYPERLINK "https://uk.wikipedia.org/wiki/%D0%9F%D0%B5%D1%80%D0%B5%D1%85%D1%96%D0%B4%D0%BD%D0%B8%D0%B9_%D1%81%D1%82%D0%B0%D0%BD" стану. Активація ферментів Активатори- це речовини, що збільшують швидкість ферментативної реакції. Роль активаторів можуть відігравати як органічні (жовчні кислоти, ферменти й ін.), так і неорганічні речовини (іони металів, аніони). Іони металів бувають досить специфічними активаторами для певних ферментів. Вони можуть сприяти приєднанню субстрату до ферменту, брати участь у формуванні третинної структури ферменту або бути складником активного центру. Іони багатьох металів (натрію, калію, кальцію, магнію, заліза, міді та ін.) є обов’язковими компонентами, що необхідні для нормального функціонування багатьох ферментів. Прикладами активуючої дії аніонів можуть бути аніони хлору відносно пепсину та амілази слини; аніони галогенів – аденілатциклази; жовчні кислоти – панкреатичної ліпази. Активація ряду ферментів залежить від процесів фосфорилювання і дефосфорилювання. Так, фосфорилаза, що відщеплює від глікогену одну молекулу глюкози, проявляє свою дію тільки у фосфорильованому стані (фосфорилаза А), в нефосфорильованому стані (фосфорилаза В) вона неактивна. В основі активації ферментів лежать різні механізми. Серед них можна назвати такі: 1 – активація за допомогою впливу на активний центр; 2 – активація шляхом відщеплення від ферменту частини пептидного ланцюга або якоїсь неорганічної сполуки, що закривала активний центр; 3 – активація шляхом приєднання до ферменту якоїсь модифікуючої сполуки; 4 – активація шляхом дисоціації неактивного комплексу ферменту на субодиниці, одна з яких проявляє властивості ферменту.
|
||||
Последнее изменение этой страницы: 2016-12-12; просмотров: 692; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.232.71 (0.009 с.) |