Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Потенциометрическое титрование

Поиск

Потенциометрическое титрование основано на определении точки эквивалентности по результатам потенциометрических измерений. Вблизи точки эквивалентности происходит резкое изменение (скачок) потенциала индикаторного электрода. Это наблюдается, конечно, лишь тогда когда хотя бы один из участников реакции титрования является участником электродного процесса. Так, например, титрование по методу кислотно-основного взаимодействия может быть выполнено со стеклянным электродом. Определение хлорида - с хлорсеребряным и т.д. Так же, как и в других титриметрических методах, реакции потенциометрического титрования должны протекать строго стехиометрически, иметь высокую скорость и идти до конца.

Для потенциометрического титрования собирают цепь из индикаторного электрода в анализируемом растворе и электрода сравнения. В качестве электродов сравнения чаще всего применяют каломельный или хлорсеребряный.

 

Виды потенциометрического титрования Кислотно-основное титрование В кислотно-основном титровании в качестве индикаторного обычно используют стеклянный электрод, как правило, входящий в комплект серийно выпускаемых промышленностью pH-метров. Потенциометрический метод позволяет провести количественное определение компонентов в смеси кислот, если константы диссоциации различаются не менее чем на три порядка. Например, при титровании смеси, содержащей хлороводородную (HCl) и уксусную кислоты, на кривой титрования обнаруживается два скачка. Первый свидетельствует об окончании титрования HCl, второй скачок наблюдается при оттитровывании уксусной кислоты. Также несколько скачков имеют кривые титрования многоосновных кислот, константы диссоциации которых существенно различаются (хромовая, фосфорная и др.). Широкие возможности анализа многокомпонентных смесей без разделения открывает применение неводных растворителей. Например, определение содержания хлороводородной и монохлоруксусной кислот в смеси титрованием водного раствора является сложной задачей в связи с трудностью обнаружения двух скачков титрования. При титровании в ацетоне оба скачка выражены достаточно четко и содержание каждой кислоты в смеси может быть рассчитано. Комплексонометрическое титрование Потенциометрическое титрование катионов комплексоном III (ЭДТА) можно проводить с использованием в качестве индикаторного электрода соответствующего металла: титрование солей меди с медным электродом, солей цинка с цинковым и т.д. или подходящего ионоселективного электрода. Однако, многие металлические индикаторные электроды необратимы, а число ионоселективных электродов невелико. Для комплексонометрических титрований может быть использован универсальный электрод Hg|HgY2- или Au(Hg)|HgY2- где Au(Hg) - амальгамированное золото; HgY2- - комплекс ртути с анионом этилендиаминтетрауксусной кислоты. С помощью ртутного электрода этого типа могут быть оттитрованы любые ионы, которые образуют с Y4- комплексы с константой устойчивости, не превышающей константу устойчивости ртутного комплекса. Это, например, ионы магния (Mg2+), кальция (Ca2+), кобальта (Co2+), никеля (Ni2+), меди (Cu2+), цинка (Zn2+) и др. Титрование по методу осаждения Индикаторными электродами в методах потенциометрического титрования, использующих реакции осаждения, служат металлические или мембранные электроды, чувствительные к определяемому иону или иону-осадителю. Практически по методу осаждения могут быть определены катионы серебра, ртути, цинка, свинца, анионы хлора, брома, иода и некоторые другие. Смесь галогенидов, например I- и Cl-, может быть оттитрована без разделения нитратом серебра. Серебряный электрод позволяет фиксировать два скачка в ходе такого титрования. Первый скачок свидетельствует об оттитровывании иодид-иона и может быть использован для расчета содержания этого иона, второй скачок относится к окончанию осаждения хлорид-иона. По второму скачку можно рассчитать суммарное содержание галогенидов или концентрацию хлорид-иона, если концентрация иодид-иона будет известна из данных по титрованию до первого скачка. Окислительно-восстановительное титрование Кривые окислительно-восстановительного титрования могут быть построены в координатах или pM - V (титранта) или E - V (титранта), если pM=-lg[M] ([M] - концентрация участника реакции, E - потенциал системы, V (титранта) - объем титранта. Кривые титрования первого типа представляют практический интерес, когда имеется индикаторный электрод, чувствительный к M. Кривые второго типа имеют более общее значение, так как любое окислительно-восстановительное титрование может быть проведено по измерению E с использованием индикаторного электрода из благородного металла, чаще всего платины.

Вопрос33. Таким образом, для осуществления электрохимической реакции необходима некоторая система - электрохимическая цепь (рис. 2). Существенные элементы такой системы:

1) два электрода, состоящие из электронопроводящих материалов (металла, графита и т.п.), контактирующих с ионными проводниками (электролитами), они осуществляют обмен электронами с участниками реакции;

2) металлический проводник (проводник I рода), соединяющий электроды и обеспечивающий прохождение электрического тока между ними, он представляет собой внешнюю цепь;

3) раствор электролита, его расплав или твердый электролит (проводники II рода), эта часть системы есть внутренняя цепь.

Чтобы осуществить реакцию (1) электрохимическим путем, система должна содержать два отделения, между которыми имеется ионопроницаемая мембрана. В одно отделение нужно налить раствор CuCl, а в другое - FeCl3, а затем погрузить в растворы по пластине инертного электрода, например платины, и замкнуть их металлическим проводником. После замыкания потечет электрический ток, причем электроны будут двигаться от пластины, погруженной в раствор CuCl, к пластине, погруженной в раствор FeCl3. Ионы Cu+ будут отдавать электроны платиновой пластине, превращаясь в ионы Cu2 +, а ионы Fe3 + будут забирать электроны с платиновой пластины, превращаясь в Fe2 +. В итоге химическая реакция (1) разделяется на две полуреакции. Одна из них, сопровождающаяся отщеплением электронов, является реакцией окисления; другая, связанная с поглощением электронов, - восстановления:

Сu+ = Cu2 + + e-

Fe3 + + e- = Fe2 +

Электрод, на котором происходит окисление, является анодом, а восстановление - катодом. В сумме двух процессов (2) и (3), происходящих на аноде и катоде, реализуется реакция (1).

В качестве еще одного примера приведем хорошо известную реакцию вытеснения металлическим цинком меди из водных растворов

Zn + Cu2 + = Zn2 + + Cu

идущую всегда по электрохимическому пути, состоящему в окислении цинка и осаждении меди

Zn = Zn2 + + 2e-

Cu2 + + 2e- = Cu

Реакции, протекающие на границе проводник первого рода/проводник второго рода с участием электронов, и являются электрохимическими. К ним относятся реакции (2), (3), (5) и (6). Для них важную роль играет строение границы раздела между электродом и раствором. Существенна также направленность потоков окислителя и восстановителя к поверхности электродов, а продуктов реакции от электродов в объем раствора. Важным следствием этих особенностей является то, что большая часть химической энергии при электрохимическом способе проведения реакции превращается в электрическую, тогда как энергия обычной химической реакции выделяется в виде теплоты.

Электрохимическая цепь работает как химический источник тока (гальванический элемент), если в ней электрический ток возникает в результате самопроизвольно идущей реакции, как в рассмотренных выше примерах. При помощи электрохимической цепи и внешнего источника тока можно осуществить различные химические превращения веществ. Такая цепь работает как электролизер.

ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ, единичные ячейки хим. источников тока, предназначенных для однократного электрич. разряда (непрерывного или прерывистого). После разряда гальванические элементы, в отличие от аккумуляторов, теряют работоспособность. Иногда термин "гальванические элементы" применяют и для обозначения единичных ячеек аккумуляторных батарей, к-рые предназначены для многократного использования, т. е. после разряда м. б. снова заряжены. Главные составные части гальванических элементов: два электрода разл. природы и электролит. Обычно электроды - это металлич. пластинки или сетки, на к-рые нанесены реагенты ("активные в-ва"); на отрицат. электрод - восстановитель (Zn, Li и др.), на положительный -окислитель (оксиды Mn, Hg и др., а также соли). На каждом из электродов, погруженных в электролит, устанавливается определенный потенциал (окислит.-восстановит. потенциал данной электродной р-ции); разность этих потенциалов в отсутствие тока наз. напряжением разомкнутой цепи (НРЦ). При соединении электродов между собой с помощью внеш. электрич. цепи электроны начинают перетекать от отрицат. электрода к положительному - возникает электрич. ток. Суммарная электрохим. р-ция на обоих электродах наз. токообразующей; по мере ее протекания восстановитель отдает, а окислитель присоединяет электроны. Ток прекращается при размыкании внеш. цепи, а также после израсходования запаса хотя бы одного из реагентов. Побочные хим. или электрохим. р-ции приводят к саморазряду гальванических элементов, ограничивающему длительность их хранения, к-рая для лучших образцов может достигать 10 лет. Гальванические элементы применяют гл. обр. для питания переносной аппаратуры (напр., транзисторных радиоприемников) и поэтому изготавливают преим. с невыливающимся электролитом (загущенным или твердым). В отличие от аккумуляторов, гальванические элементы не нуждаются в особом уходе при эксплуатации.

 

Наиб. распространены марганцево-цинковые элементы (окислитель-МnО2, восстановитель-Zn) с солевым электролитом (р-р NH4C1 и др.) или щелочным (р-р КОН). Для них НРЦ 1,5-1,8 В, уд. энергия 10-80 Вт-ч/кг. Стоимость элементов сравнительно невелика, и их мировое произ-во достигает 8-10 млрд. штук в год. Элементы со щелочным электролитом дороже, но обладают лучшими характеристиками, особенно при низких т-рах и повыш. токах разряда.

Для ртутно-цинковых элементов (окислитель-HgO) со щелочным электролитом НРЦ 1,35 В, уд. энергия до 400 Вт • ч/л. Их изготавливают в виде малогабаритных ("пуговичных") герметичных устройств и применяют для питания радиоприемников, кино- и фотоаппаратуры и т.п. В воздушно-цинковых элементах окислителем вместо относительно дорогих оксидов металлов служит О2 воздуха, к-рый участвует в р-ции на электроде, изготовленном из каталитически активного угля. Спец. отверстие в крышке обеспечивает своб. доступ воздуха к электроду. Отсутствие заложенного запаса окислителя обеспечивает высокие значения уд. энергии - до 250 Вт*ч/кг. Недостатки этих элементов - небольшое значение разрядного тока и сравнительно быстрый саморазряд, что обусловлено взаимод. щелочного электролита с окружающей атмосферой. В результате электролит высыхает либо взаимод. с СО2 воздуха (карбонизируется). Поэтому такие элементы пока не получили широкого распространения. В гальванических элементах с неводными электролитами возможно применение очень активных восстановителей (напр., щелочных металлов) и окислителей, к-рые в водных р-рах неустойчивы. При использовании расплавленных или твердых электролитов такие гальванические элементы могут работать при повыш. т-pax. В литиевых элементах на основе апротонных р-рителей восстановителем служит тонкий лист Li, напрессованный на пластину или сетку из Ni или Си. Окислители - гл. обр. твердые МпО2 или фторированный графит. Разработаны элементы с р-рителями, выполняющими одновременно роль окислителя, - жидким SOC12 или сжиженным SO2. To-кообразующие р-ции приводят к непосредственному восстановлению молекул р-рителя под действием Li; детальный механизм разряда окончательно не установлен. Благодаря высокому отрицат. потенциалу Li и его малому расходу литиевые элементы имеют высокие НРЦ (2,5-3,5 В) и уд. энергию (250-600 Вт*ч/кг). Литиевые элементы применяют преим. для питания кардиостимулято-ров, микрокалькуляторов и др. миниустройств. Разновидность гальванических элементов - резервные элементы, в к-рых с целью снижения саморазряда электролит разобщен с электродами или находится в твердом неионопроводящем состоянии. Непосредственно перед использованием таких гальванических элементов электроды приводят в контакт с электролитом или расплавляют электролит. Напр., при изготовлении т. наз. водоактивируемых гальванических элементов безводную щелочь или соль закладывают в мешочках в межэлектродное пространство; перед эксплуатацией в отверстие в крышке заливают воду, и образуется электролит требуемой концентрации

 



Поделиться:


Последнее изменение этой страницы: 2016-12-10; просмотров: 348; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.208.189 (0.009 с.)