Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные дефекты электрических машин и их проявление

Поиск

 

На основе опыта эксплуатации можно привести перечень наиболее часто встречающихся характерных дефектов электрических машин.

Сердечник статора:

- повреждение межлистовой изоляции, вызывающее местные перегревы;

- ослабление прессовки, вызывающее вибрацию пластин стали с повреждением межлистовой изоляции; распушение крайних пакетов, вызывающее излом листов;

- изменение формы статора гидрогенераторов из-за ослабления стыковки секторов статора, что может привести к касанию ротора и статора.

Обмотка статора:

- ослабление крепления стержней в пазу, вызывающее истирание изоляции стержня;

- повреждение полупроводящего покрытия стержня, вызывающее появление частичных разрядов (ЧР); расслоение изоляции, вызывающее ее ускоренное старение;

- нарушение изоляции элементарных проводников, вызывающее увеличение циркуляционных токов и местный перегрев обмотки;

- ослабление крепления лобовых частей, вызывающее истирание изоляции, смещение проводников и повышенную вибрацию лобовых частей;

- загрязнение, замасливание и увлажнение изоляции, вызывающее снижение электрической прочности изоляции;

- трещины в изоляции, приводящие к снижению ее электрической прочности.

- для машин с непосредственным водяным охлаждением весьма опасным дефектом является увлажнение изоляции из-за нарушения герметичности системы охлаждения, вызывающее пробой в зоне стержня на выходе из паза.

Система непосредственного охлаждения:

- закупорка каналов непосредственного охлаждения, приводящая к местным перегревам обмотки;

- нарушение герметичности, приводящее к появлению дистиллята внутри корпуса и увлажнению изоляции.

Ротор:

- трещины в различных частях ротора турбогенератора или валу гидрогенератора, приводящие к повышенным вибрациям на оборотной частоте и изменению фазы вибрации;

- нарушение целости бандажных колец и клиньев обмотки ротора, приводящее к повышенным вибрациям.

 

 

Обмотка возбуждения:

- повреждение корпусной изоляции и витковые замыкания, приводящие к повышенным вибрациям на оборотной частоте и появлению подшипниковых токов;

- износ полых проводников при водяном охлаждении, приводящий к тепловому небалансу ротора и повышенным вибрациям.

Воздушный зазор (для гидрогенераторов и крупных асинхронных двигателей):

- изменение формы зазора или соосности сердечников статора и ротора, приводящее к асимметрии тока в параллельных ветвях и к возможному задеванию ротора о статор с последующим разрушением последних.

Подшипники и подпятники:

- нарушение изоляции, приводящее к появлению подшипниковых токов и повышенному нагреву подшипников;

- износ рабочих поверхностей и перекосы, которые также приводят к увеличению температуры и уровня вибрации.

Уплотнения вала ротора (для турбогенераторов с водородным охлаждением):

- износ уплотнений или их повреждение, приводящие к увеличению расхода водорода и попаданию масла внутрь корпуса;

- перекос уплотнений, приводящий к их повышенному нагреву.

Средства и методы контроля состояния отдельных узлов. Сердечник статора. Ослабление прессовки сердечника приводит к его повышенной вибрации, которая контролируется специальными датчиками, установленными на корпусе машины. Повреждение межлистовой изоляции приводит к местным перегревам, которые контролируются либо термодатчиками, установленными в активной стали статора, либо тепловизорами, либо с помощью специальных термоиндикаторных покрытий. Эти покрытия наносятся на поверхность критических по перегревам узлов машины, и при достижении предельной температуры выделяют определенные газы и аэрозоли, которые выявляют при химическом анализе охлаждающего газа. На разные узлы машины наносятся покрытия различного химического состава, что позволяет не только зафиксировать местные перегревы, но и идентифицировать их источники. Кроме покрытий на опасные места могут устанавливаться термочувствительные «этикетки», изменяющие свой цвет при превышении порогового значения температуры места установки. Осмотр «этикеток» возможен только во время ревизии на остановленной машине.

Обмотка статора. Контроль теплового состояния обмотки осуществляется либо с помощью встроенных датчиков температуры, либо с помощью тепловизоров, либо путем химического анализа охлаждающего газа, в котором находятся продукты термического разложения изоляции. По концентрации продуктов разложения можно судить о степени перегрева изоляции. Контроль за местными перегревами можно проводить с помощью нанесения термоиндикаторных покрытий или термочувствительных «этикеток».

Контроль состояния изоляции осуществляется анализаторами ЧР, измеряющими интенсивность частичных разрядов. Сигналы на анализатор поступают от емкостных датчиков связи, устанавливаемых под пазовым клином. Существующие анализаторы ЧР позволяют распознать следующие дефекты обмотки статора: ослабление крепления обмотки в пазу, повреждение полупроводящего покрытия, расслоение или плохая пропитка изоляции, отслоение меди от корпусной изоляции, существенный износ изоляции, ослабление крепления обмотки. В связи с высокой информативностью анализаторы ЧР получили широкое распространение в системах диагностики крупных электрических машин.

Частичные разряды приводят к появлению озона в охлаждающем газе. Большая концентрация озона свидетельствует о наличии частичных разрядов в изоляции, связанных с повреждением полупроводящего покрытия.

Воздушный зазор. Контроль воздушного зазора осуществляется с помощью систем оптического контроля, имеющих точность 0.05 мм при пределе измерения 40 мм. С помощью таких систем, имеющих датчики на статоре и роторе, удается выявить радиальные колебания статора, неравномерное расширение статора при нагревании, динамические изменения воздушного зазора при изменениях режима работы и биение вала.

В последнее время широко используются системы контроля воздушного зазора гидрогенераторов на базе емкостных датчиков. Они проще оптических и позволяют обойтись только датчиками, установленными на статоре.

Подшипники и подпятники. Для определения состояния подшипников осуществляется непосредственный (путем установки датчиков на баббитовых вкладышах) или косвенный (измерение температуры масла на входе и выходе подшипника) тепловой контроль, а также контроль вибрации.

Отдельно следует сказать о широко применяемых в настоящее время системах вибродиагностики. Эти системы позволяют получать достоверную информацию о наличии следующих дефектов: разбалансировка ротора, несоосность вала, неравномерность воздушного зазора, дефекты уплотнений, трещины в роторе, структурные резонансы и ряд других.

На базе комплекса методов выявления дефектов созданы автоматизированные системы контроля состояния крупных электрических машин. Так, созданная в России система СКДГ контролирует температуру, электрические и механические параметры и выдает предупредительные и аварийные сигналы при выходе измеряемых величин за допустимые пределы. Система имеет 120 каналов контроля, обрабатывает и сохраняет данные измерений и показатели режимов работы.

Основным направлением развития систем диагностики является автоматизация. Примером автоматизированных систем может служить система SUPER, установленная на одной из канадских ГЭС.

Система SUPER фиксирует каждую минуту 52 механических и 10 электрических параметров и содержит 50 установок на сигнал. В основной процессор данные передаются обычно один раз в час. В случае срабатывания какой-либо из установок (сигнал тревоги – выход контролируемого параметра за допустимые пределы) в процессор передаются данные за предыдущий час работы. Математическое обеспечение позволяет обрабатывать и передавать сигналы датчиков, отбирать их для базы данных, осуществлять постоянный контроль и анализ в режиме «on-line» и проводить специальные тесты.

В системах функциональной диагностики нашли широкое применение устройства контроля химических и механических примесей в охлаждающем газе, позволяющие определять перегревы изоляции (по продуктам ее тепловой деструкции или по продуктам разложения термочувствительных покрытий) и степень ее механического износа (по составу и количеству механических примесей). Эти устройства могут быть как стационарными (для постоянного контроля состояния изоляции), так и переносными (для периодического контроля состояния изоляции).

Применение систем функциональной диагностики совместно с испытаниями и проверками во время ревизий и осмотров позволяет максимально увеличить межремонтный период, а при необходимости проведения ремонта более точно определить место и степень повреждения, минимизировав тем самым его объем и время проведения.



Поделиться:


Последнее изменение этой страницы: 2016-09-20; просмотров: 2190; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.25.109 (0.01 с.)