Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Математические модели в задачах диагностикиСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Экспериментальные данные, обеспечивающие получение статических зависимостей, описывающих связи между нарушением в конструкции объекта и измеряемым параметром, можно получить только для объектов массового производства. В некоторых случаях такие зависимости получить невозможно. Тогда один из способов получения необходимой информации – использование уравнений, описывающих процессы в элементах объекта, в том числе и процесс развития неисправности, т.е. математических моделей объекта. В результате расчётов с использованием, как уравнений объекта, так и уравнений неисправности, устанавливается связь между степенью развития неисправности и поведением измеряемых параметров, т.е. информация, необходимая для формирования алгоритмов систем функционального диагностирования (СФД). Математические модели (ММ) элементов системы. Математические модели (ММ) элемента системы – это совокупность дифференциальных и алгебраических уравнений, эмпирических формул, таблиц, графиков, описывающих характеристики элемента (агрегата, узла), т.е. связи между внутренними и внешними управляющими и возмущающими параметрами:
где x – вектор параметров объекта; y – вектор управляющих воздействий; u – вектор возмущающих воздействий. Для задач функциональной диагностики ММ применяются при моделировании (численный эксперимент) развития той или иной неисправности с целью выявления диагностических признаков и проверки эффективности работы технических средств диагностики. Существуют ММ нормально функционирующего элемента и ММ, в которые заложены данные развития той или иной неисправности. Последние ММ определяют связи между изменением конструктивных параметров, вызывающих ненормальную работу объекта, и измеряемыми параметрами. Эти два типа ММ могут существенно отличаться, так как появление неисправности может изменить структуру объекта, а также приводит к появлению новой переменной, характеризующей степень развития неисправности. По способу формирования ММ можно разделить на аналитические, эмпирические и полуэмпирические. По форме записи используемых уравнений, а точнее – по глубине описания процесса, все ММ делятся на линейные и нелинейные. Кроме того, в зависимости от характера исходных данных, методов их обработки при формировании ММ, полуэмпирические и эмпирические ММ делятся на детерминированные и стохастические. Соотношение между характерными размерами исследуемого объекта и длиной распространяющихся в объекте волн позволяет определить необходимость использования ММ, описывающих объект как систему с распределенными или сосредоточенными параметрами. Из соотношения между характерной постоянной времени системы и временем развития неисправности выясняется вопрос о необходимости учета динамических процессов в системе или возможности ограничиться квазистатическим подходом, т.е. использовать статические ММ. Аналитические модели содержат дифференциальные уравнения, граничные и начальные условия к ним, алгебраические зависимости, полученные из общих физических закономерностей. Преимущество аналитических ММ – их общность, возможность описания процессов в достаточно широком круге объектов. Существенные недостатки этих ММ – невысока точность описания свойств многих объектов из-за сложности реальных процессов и отсутствия для них достаточно точных аналитических зависимостей, а также трудоемкость нахождения решений, описывающих более или менее сложные процессы, даже с использованием современных ЭВМ. Эмпирические (экспериментальные) модели обладают достаточной точностью, однако для получения функциональных связей между параметрами процесса в объекте и внешними возмущениями или регулирующими параметрами необходим большой объем экспериментов. Результаты экспериментов не всегда можно распространить на подобные объекты. Для получения обобщенных экспериментальных зависимостей, пригодных для описания процессов в ряде однотипных объектов, необходимо использовать методы теории подобия. Наибольшее распространение получили смешанные полуэмпирические ММ, при формировании которых используются как общие физические закономерности, так и данные экспериментов, которые позволяют учесть многие детали процесса, не учитываемые аналитическими ММ. В случае формирования чисто эмпирических и полуэмпирических ММ для выбора наиболее удобной формы уравнений и определения их коэффициентов используются методы идентификации. Все перечисленные виды ММ находят применение при построении ТСД. В нелинейных уравнениях, записываемых в форме (2.4), переменные x, y, u и их производные входят в виде произведений, степеней, трансцендентных функций и т.д. Линейные (линеаризированные) уравнения имеют форму
где A (s) – квадратная матрица, коэффициенты которой – многочлены по s; s = d / d t – оператор дифференцирования. Для линейных уравнений существуют хорошо разработанные методы решения, для них применим принцип суперпозиции; для нелинейных уравнений таких общих методов решений нет. Для большинства объектов, включающих ТСД, изменения параметров процессов в достаточно широком диапазоне описываются нелинейными зависимостями. В зависимости от класса решаемой задачи один и тот же объект можно описать как нелинейными, так и линейными (линеаризованными) уравнениями, и если позволяют условия использования результатов решения, всегда имеет смысл хотя бы в первом приближении решать линейное (линеаризованное) уравнение. При построении ММ допустимая степень упрощения модели определяется условиями функционирования системы. Модели объектов, состоящих из связанных между собой элементов (агрегатов, устройств), формируются в два этапа: вначале создание ММ процессов в отдельных органах, агрегатах, узлах системы, а затем разработка ММ всей системы в целом с участием частных ММ отдельных подсистем и структуры связей между ними. Математические модели систем. Для анализа состояния системы необходимо из ММ элементов собрать ММ всей системы, однако совокупность всех ММ, входящих в систему элементов, не является еще ММ системы. Для формирования замкнутой системы уравнений к уравнениям элементов необходимо добавить уравнения связей между параметрами входящих в ММ элементов. Если нарисовать схему системы, то все элементы окажутся связанными между собой, так как между ними осуществляется обмен информацией, рабочей средой, электрическим током, энергией и т.д. Для сечений или точек, связывающих между собой элементы, соблюдаются законы сохранения. В этом случае удобно применить аппарат теории цепей. Модели неисправности. Под моделью неисправности понимается аналитическая или стохастическая зависимость, связывающая параметр, характеризующий степень развития неисправности, с временем или параметрами объекта диагностики. В качестве параметра, характеризующего неисправность, обычно используются первичные конструктивные параметры объекта, изменение которых является причиной появления признаков неисправности – изменения измеряемых параметров. Как правило, используются ММ простых неисправностей, которые связаны с отклонением от нормального значения конструктивного параметра только одного агрегата объекта диагностики. Случай сложной неисправности, когда от нормального значения отклоняются одновременно (или в какой-то последовательности) конструктивные параметры ряда агрегатов, очень неудобен как для моделирования, так и для диагностики из-за многообразия возможных сочетаний параметров по величине, взаимной последовательности и т.д. Если моделируются неисправности, нарушающие структуру моделируемой системы, то возможные неисправности должны быть заранее предусмотрены в ММ в виде отдельных структурных элементов. Для воспроизведения картины развития неисправности с помощью ММ объекта в первую очередь необходимо определить, за какое характерное время развивается неисправность. Если это время соизмеримо или меньше характерной постоянной времени объекта, то необходимо использовать ММ объекта диагностики, в которой учтены динамические эффекты, т.е. члены с производными по времени. Для таких неисправностей закон изменения первичных признаков (отклонений параметров) задается как функция времени:
где Δ єi – отклонение i -го первичного конструктивного параметра, являющегося причиной развития данной неисправности; t н – момент начала отклонения первичного параметра за допустимые пределы; t к – момент окончания измерения первичных параметров; ƒi (t) – закон изменения во времени. Возможен другой вариант соотношения характерных времен, когда время развития неисправности на много больше постоянной времени объекта. В этом случае можно использовать квазистационарную ММ объекта, в которой отсутствуют члены с производными по времени.
|
|||||||||||||||
Последнее изменение этой страницы: 2016-09-20; просмотров: 743; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.145.41 (0.01 с.) |