Виды повреждений и ненорм режимов 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Виды повреждений и ненорм режимов



Виды повреждений. Основными видами повреждений в трансформаторах и автотрансформаторах являются: замыкания между фазами внутри кожуха трансформатора (трехфазного) и на наружных выводах обмоток; замыкания в обмотках между витками одной фазы (витковые замыкания); замыкания на землю обмоток или их наружных выводов; повреждения маг> нитопровода трансформатора, приводящие к появлению местного нагрева и "пожару стали". Опыт показывает, что КЗ на выводах и витковые замыкания в обмотках происходят наиболее часто. Междуфазные повреждения внутри трансформаторов возникают значительно реже. В трехфазных трансформаторах они хотя и не исключены, но маловероятны вследствие большой прочности междуфазной изоляции. В трансформаторных группах, составленных из трех однофазных трансформаторов, замыкания между обмотками фаз практически невозможны.

 

При витковых замыканиях (рис. 16.1) токи, идущие к месту повреждения от источников питания, могут быть небольшими. Чем меньше число замкнувшихся витков wa, тем меньше будет ток 7К, приходящий из сети.

Для ограничения размера разрушения РЗ от повреждений в трансформаторе должна действовать быстро (t = 0,05 + 0,1 с).

Защита от повреждений. В качестве таких РЗ применяются токовая отсечка, дифференциальная и газовая защиты.

На трансформаторах мощностью 200 MB • А и более предусматривается автоматическое пожаротушение водой.

Все изложенное далее в равной мере относится к трансформаторам и автотрансформаторам. Особенности РЗ автотрансформаторов будут оговариваться особо.

Виды ненормальных режимов. Наиболее частым ненормальным режимом работы трансформаторов является появление в них сверхтоков, т. е. токов, превышающих номинальный ток обмоток трансформатора. Сверхтоки в трансформаторе возникают при внешних КЗ, качаниях и перегрузках. Последние возникают вследствие самозапуска электродвигателей, увеличения нагрузки в результате отключения параллельно работающего трансформатора, автоматического подключения нагрузки при действии АВР и т. п.

Внешние КЗ. При внешнем КЗ, вызванном повреждением на шинах трансформатора или неотключившимся повреждением на отходящем от шин присоединении, по трансформатору проходят токи КЗ 1К > 1Ном, которые нагревают его обмотки сверх допустимого значения, что может привести к повреждению трансформатора. В связи с этим трансформаторы должны иметь РЗ от внешних КЗ, отключающую трансформатор.

Защита от внешних КЗ осуществляется при помощи МТЗ, МТЗ с блокировкой минимального напряжения, дистан­ционной РЗ, токовых РЗ нулевой и обратной последовательностей. В зону действия РЗ от внешних КЗ должны входить шины подстанций (I участок) и присоединения, отходящие от этих шин (II участок). Эти РЗ являются также резервными от повреждений в трансформаторе.

 

Перегрузка. Время действия РЗ от перегрузки определяется только нагревом изоляции обмоток. Масляные трансформаторы допускают длительную перегрузку на 5%. В аварийных режимах допускается кратковременная перегрузка в следующих пределах:

Кратность перегрузки 1,3 1,6 1,75 2 3

Допустимое время перегрузки, мин.. 120 45 20 10 1,5

Из этих данных видно, что перегрузку порядка (1,5-2) /ном можно допускать в течение значительного времени, измеряемого десятками минут. Наиболее часто возникают кратковременные, самоликвидирующиеся перегрузки, неопасные для трансформатора ввиду их непродолжительности, например перегрузки, вызванные самозапуском электродвигателей или толчкообразной нагрузкой (электропоезда, подъемники и т. п.). Отключения трансформатора при таких перегрузках не требуется. Более длительные перегрузки, вызванные, например, автоматическим подключением нагрузки от АВР, отключением параллельно работающего трансформатора и др., могут быть ликвидированы обслуживающим персоналом, который располагает для этого достаточным временем. На подстанциях без дежурного персонала ликвидация длительной перегрузки должна производиться автоматически от РЗ отключением менее ответственных потребителей или перегрузившегося трансформатора.

Таким образом, РЗ трансформатора от перегрузки должна действовать на откючение только в том случае, когда перегрузка не может быть устранена персоналом или автоматически.

Повышение напряжения. Опасное для трансформаторов повышение напряжения возникает в сетях 500-1150 кВ при одностороннем отключении длинных ЛЭП с большой емкостной проводимостью. Повышение напряжения вызывает увеличение магнитной индукции в магнитопроводе трансформатора, вследствие чего нарастают ток намагничивания и вихревые токи. Эти токи нагревают обмотки и сердечник трансформатора, что может привести к повреждению изоляции обмоток и "пожару железа" сердечника. Чем больше уровень напряжения, тем меньше время, в течение которого оно допускается.

Неполнофазный режим. На автотрансформаторах (AT) предусматриваются РЗ от неполнофазного режима, возникающего при отключении (или включении) не всеми фазами сторон высшего (ВН) или среднего (СН) напряжений. Эта РЗ должна действовать на отключение AT. Необходимость установки такой РЗ обусловлена возможностью отключения в указанном режиме второго, параллельно работающего AT той же подстанции.

Понижение уровня масла в баке трансформатора ниже уровня обмоток, что возможно при течи в баке или резком понижении температурь! наружного воздуха, может привести к повреждению обмотки.

Газовая защита

азовая защита (ГЗ) устанавливается на трансформаторах (автотрансформаторах) и реакторах с масляным охлаждением, имеющих расширители. Применение ГЗ является обязательным на трансформаторах (автотрансформаторах) мощностью 6300кВА и более, а также на трансформаторах мощностью 1000-4000кВА, не имеющих диф.защиты или ТО, и если МТЗ имеет выдержку времени 1сек. и более. На трансформаторах мощностью 1000-4000кВА применение ГЗ при наличии другой быстродействующей защиты допускается, но не является обязательным. Применение ГЗ является обязательным также для внутрицеховых трансформаторов мощностью 630кВА и выше, независимо от наличия других быстродействующих защит.

Действие ГЗ основано на том, что всякие, даже незначительные повреждения, а также повышение нагрева внутри бака трансформатора вызывают разложение масла и органической изоляции, что сопровождается выделением газа. Интенсивность газообразования и химический состав газа зависят от характера и размеров повреждения. Поэтому защита выполняется так, чтобы при медленном газообразовании подавался предупредительный сигнал, а при бурном – ГЗ действовала на отключение. Бурным газообразованием обычно сопровождается К.З. внутри бака трансформатора. Кроме тог ГЗ действует на сигнал на отключение или только на сигнал при опасном понижении уровня масла в баке трансформатора или автотрансформатора. ГЗ является универсальной и наиболее чувствительной защитой трансформаторов и автотрансформаторов от внутренних повреждений. Она реагирует на такие опасные повреждения как замыкания между витками обмоток, на которые не реагируют другие виды защит из-за недостаточной величины тока при этом повреждении.

ГЗ осуществляется с помощью специальных газовых реле, которые подразделяются на поплавковые, лопастные и чашечные. Газовое реле представляет собой металлический кожух, врезанный в маслопровод между баком трансформатора и расширителем. Реле заполнено маслом. Кожух имеет смотровое стекло со шкалой, с помощью которой определяется объем скопившегося в реле газа. На крышке газового реле имеется краник для выпуска воздуха и взятия пробы газа для его анализа, а также расположены контакты для подключения кабеля.

Поплавковые реле

У поплавковых реле внутри кожуха укреплены на шарнирах два поплавка, представляющие собой полые металлические цилиндры. На поплавках укреплены ртутные контакты, соединенные гибкими проводами с выводными зажимами на крышке реле. Ртутный контакт представляет собой стеклянную колбочку с впаянными в ее вертикальную часть двумя контактами. Колбочки содержат небольшое количество ртути, которая в определенном положении колбочки замыкает между собой контакты, чем создается цепь через реле.

При скорости движении потоков газа и масла порядка 0,5м/с нижний поплавок, находящийся на пути потока опрокидывается и происходит замыкание его ртутных контактов в цепи отключения. Благодаря тому, что при К.З. в трансформаторе сразу возникает бурное газообразование, ГЗ производит отключение с небольшим временем 0,1-0,3сек. Отключающий элемент работает также при большом понижении уровня масла в корпусе реле. ПГ-22 – поплавковое реле.

Лопастное реле

У лопастных реле сигнальный элемент выполнен также, как у поплавковых, а отключающий состоит из поплавка и поворотной лопасти, механически связанных с общим ртутным контактом, действующем на отключение.

Чашечные реле

У чашечных реле вместо поплавков используется открытые металлические чашки и вместо ртутных контактов обычно открытые контакты, работающие непосредственно в масле

Нормально, когда корпус реле полностью заполнен маслом, при этом верхняя и нижняя чашки тоже заполнены маслом и удерживаются в исходном состоянии пружинами.

Токовая отсечка трансф

Токовой отсечкой называется быстродействующая максимальная токовая защита с ограниченной зоной действия. Применительно к понижающим трансформаторам в зону действия отсечки входит только часть обмотки трансформатора со стороны ВН, где включены реле отсечки (рис. 5-1). При к.з. за трансформатором (точка К\) отсечка ни в коем случае не должна

приходить в действие. Это условие обеспечивается тем, что ток срабатывания отсечки выбирается большим, чем максимальный ток к. з. в точке К\. Благодаря этому токовая отсечка трансформатора не может сработать и при к. з. на отходящих линиях НН (точка /Сг) и, следовательно, может быть выполнена без выдержки времени.

Из рассмотрения принципа действия токовой отсечки видно, что селективность (избирательность) ее работы обеспечивается только выбором тока срабатывания по условию

(5-1)

где /к3)Макс. вн—максимальное значение тока трехфазного к. з. за трансформатором, т. е. вне зоны действия отсечки, приведенного к стороне ВН, где установлена отсечка A; kH — коэффициент надежности, значения которого зависят от типа применяемых токовых реле: 1,3—1,4 —для реле типа РТ-40 и примерно 1,6 — для реле РТ-80 (ИТ-80) и РТМ [5].

Ток /к. макс. вн определяется при максимальном режиме питающей системы (когда сопротивление системы имеет минимально возможное значение), а для трансформаторов РПН дополнительно следует принимать и минимально возможное значение сопротивления защищаемого трансформатора при крайнем положении его регулятора напряжения (§ 2-5).

Ток срабатывания токовых реле отсечки (уставка) определяется по выражению, общему для всех вторичных токовых реле, т. е. реле, включенных через трансформаторы тока:

(5-2)

где /с. о — первичный ток срабатывания отсечки, выбранный по условию (5-1); пт — коэффициент трансформации трансформаторов тока ТТ на стороне ВН трансформатора; коэффициент схемы при симметричном режиме, показывающий, во сколько раз ток в реле защиты (отсечки) больше, чем вторичный ток трансформаторов тока.

Для схемы соединения трансформаторов тока в звезду &Сх=1 для всех видов к. з. (рис. 5-2, а). Для схемы соединения трансформаторов тока на разность токов двух фаз (рис. 5-2, б) при симметричном нагрузочном режиме и при трехфазном к. з.

= л/з; но для двухфазных к. з. А — В и В — С значение kcx = 1. Из сравнения этих схем, применяемых для выполнения отсечки трансформаторов 6—35 кВ, видно, что при одинаковых значениях /с. о и пт ток срабатывания (уставка) токовых реле в схеме рис. 5-2, б, по условию (5-2), получится в раз большим, чем для схемы рис. 5-2v а. Это имеет очень большое значение при оценке чувствительности, которая осуществляется с помощью так называемого коэффициента чувствительности

(5-3)

где /р. мин — минимальное значение тока в реле при металлическом двухфазном к. з. на выводах ВН защищаемого трансформатора (точка К на рис. 5-2), А; /с. р — ток срабатывания реле (уставка), вычисленный по условию (5-2).

Значение kч по Правилам [1] должно быть равно примерно 2.

Для схемы на рис. 5-2, а при всех вариантах двухфазного к. з. и для схемы на рис. 5-2, б при к. з. между фазами А и В, В и С kcx = 1 и, следовательно,

(5-4)

где /^мин — минимальное значение первичного тока при трехфазном к. з. на выводах ВН защищаемого трансформатора, вычисленное при наибольшем сопротивлении питающей системы.

Защита от перегрузки

Перегрузка трансформаторов (автотрансформаторов) обычно бывает симметричной. Поэтому защита от перегрузки выполняется с помощью МТЗ, включенной на ток одной фазы. Защита действует с выдержкой времени на сигнал, а на необслуживаемых подстанциях – на разгрузку или отключение трансформатора. На двухобмоточных трансформаторах защита о перегрузки устанавливается со стороны основного питания. На трехобмоточных трансформаторах при двухстороннем питании – со стороны основного питания и со стороны обмоток, где питание отсутствует, а при трехстороннем питании – со всех трех сторон. На автотрансформаторах с трехсторонним питанием защита от перегрузки устанавливается со стороны основного питания КА1, со стороны высшего напряжения КА2 и со стороны выводов обмотки автотрансформатора к нулевой точке (нейтрали) КА3 для контроля за перегрузкой общей части обмотки. Кроме того, на повышающих автотрансформаторах с трехстороннем питанием устанавливается защита от перегрузки стороны среднего напряжения КА4 в режиме когда в обмотке НН нет тока. Необходимость этой защиты вызвано тем, что в таком режиме пропускная мощность автотрансформатора снижается. Защита КА4 вводится в действие контактом реле КА5, который замыкается при исчезновении тока в обмотке НН.

 

 

21.Максимальная токовая защита с пуском по напряжению
Структурная схема максимальной токовой защиты с пусковым органом напряжения (Н <) показана на рис. 8-10, а. При к.з. на шинах НН напряжение на пусковом органе //< резко снижается, что приводит к его срабатыванию. В это же время через трансформатор проходит ток к. з., вызывающий срабатывание токового измерительного органа (выполненного двумя или тремя реле, как показано на рис. 8-1). Одновременное срабатывание органов //< и Г>, включенных по логической схеме И, приводит к запуску органа выдержки времени В и к отключению трансформатора. В других случаях увеличения тока через трансформатор (самозапуск электродвигателей нагрузки или подключение дополнительной нагрузки) напряжение на шинах НН снижается не столь значительно, как при к.з., пусковой орган НС при правильной его настройке не срабатывает и защита не может действовать на отключение даже при условии срабатывания токового органа 7'>.


Рис. 8-10. Структурная схема максимальной токовой защиты с пуском по напряжению (а) и схема комбинированного пускового органа
напряжения (б)
Очевидно, что применение пускового органа напряжения позволяет не отстраивать ток срабатывания максимальной защиты от токов самозапуска и перегрузки, т. е. не учитывать коэффициент kc*n в выражении (8-1), а условие (8-2) вообще не использовать. Для современных максимальных токовых защит с электромеханическими реле, имеющих пуск по напряжению, ток срабатывания может приниматься без специального расчета равным 1,5 /ном 7> Это примерно в 2—3 раза меньше, чем для максимальных защит без пуска по напряжению, установленных на трансформаторах, питающих двигательную нагрузку. Таким образом, пуск по напряжению делает максимальную токовую защиту значительно более чувствительной к к. з. на шинах НН (СН) и к к. з. в сети, т.- е. в основной зоне и в зоне резервирования. Поэтому пусковой орган напряжения устанавливается практически на всех понижающих трансформаторах 110—220 кВ, а также на трансформаторах 35 кВ, питающих двигательную нагрузку. В последние годы пуск по напряжению применяется и для защит трансформаторов 6 (10) кВ, питающих нагрузку, в основном состоящую из асинхронных электродвигателей, участвующих в самозапуске [29].
Пуск по напряжению осуществляется, главным образом, с помощью комбинированного пускового органа (рис. 8*10,6), выполненного с одним минимальным реле напряжения / (типа РН-50), включенным на междуфазное напряжение, и одним фильтром-реле напряжения обратной последовательности 2 (типа РНФ-1М), разрывающим своим контактом цепь обмотки минимального реле 1 [1]. Реле / может использоваться с размыкающим или замыкающим контактом в зависимости от построения схемы защиты.
Комбинированный пусковой орган работает следующим образом. В нормальном режиме размыкающий контакт реле 2 замкнут и через него подано напряжение на обмотку реле 1. При несимметричном к. з. появляется напряжение обратной последовательности, срабатывает реле 2 и размыкает свой контакт в цепи реле /, в результате чего реле / теряет питание, возвращается и переключает свои контакты в положение «на складе». Этим осуществляется пуск максимальной токовой защиты. При симметричжж (трехфазном) к. з. реле 2 не срабатывает, но напряжение снижается на всех фазах, в том числе и на тех, на которые включено реле /, поэтому оно возвратится, если напряжение снизится ниже его напряжения возврата (обычно 0,5—0,6 номинального). Комбинированный пусковой орган напряжения показан в полной схеме защиты трансформатора на переменном оперативном токе на рис. 10-1.
В ряде случаев вместо комбинированного пускового органа напряжения применяется пусковой орган, состоящий из трех минимальных реле напряжения, включенных на три междуфазные напряжения, размыкающие контакты которых включены параллельно, т. е. по схеме ИЛИ (рис. 4-4). Три реле необходимы для того, чтобы пусковой орган надежно действовал при всех сочетаниях двухфазного к. з.: А—В, В—С, С—А, поскольку лишь напряжение между замкнувшимися фазами снижается до нуля

23. Схема дифференциальной токовой отсечки, вы­полненной на максимальных реле тока типа РТ-40 (без специальных устройств для выравнивания вто­ричных токов). Схема приведена на рис. 40,а. Выбор тока срабатывания производится по выражениям (41)-(46).

Рис. 40. Схема дифференциальной токовой отсечки трансфор­матора со схемой соединения обмоток Y/∆-11, выполненная на реле типа РТ-40 (а) и расчетная схема к примеру выбора тока срабатывания дифференциальной отсечки (б\

Для примера рассчитывается дифференциальная токовая отсечка трансформатора ТМ-4000/10, напря­жением 10/6,3 кВ, мощностью 4 MB -А; напряжение КЗ Uk = 7,5%. Максимальное и минимальное значе­ния тока при трехфазном КЗ за трансформатором одинаковы: 2600 А, отнесенных к напряжению 10 кВ. Номинальные токи трансформатора, определенные по выражениям (2) и (3), равны 231 А — для стороны ВН и 367 А — для стороны НН.

Выбираются ТТ с коэффициентом nт.т. = 400/5 для обеих сторон, но с учетом схемы соединения ТТ на стороне ВН в треугольник, вторичный номинальный ток в этом плече защиты I2ном.вн. = 5 А (231*5*1,73/400), в другом — I2ном.нн = 4,59 А (367*5/400). Значения этих токов указаны на расчетной схеме (рис. 40,6).

Ток небаланса определяется по выражениям (44) — (46):

Ток срабатывания защиты по условию отстройки от тока небаланса по выражению (41) будет Iс.з. = 1,3*863= 1122 А или 486% номинального тока трансформатора. При таком токе срабатывания также обеспечивается отстройка (несрабатывание) этой за­щиты при БТН в момент включения трансформатора под напряжение.

Ток срабатывания реле по выражению (22)

Коэффициент чувствительности по выражению (42)

где Iр.= 1,5*2600/ (400/5) = 48,7 А — ток в реле ТДА или ТДС (рис. 40, а) при двухфазном КЗ за трансфор­матором со схемой соединения обмоток Y/∆-11 (см, векторную диаграмму рис, 2, д). Коэффициент чувствительности для этой схемы может быть вычислен и по первичным токам:

Несмотря на то, что значение коэффициента чув­ствительности соответствует требуемому [1], диффе­ренциальная защита, имеющая, как правило, ток сра­батывания, в 4—5 раз превышающий номинальный ток трансформатора, не может считаться эффектив­ной. Более чувствительную дифференциальную за­щиту можно выполнить на реле серии РНТ-560

24. Принципиальные схемы дифференциальной защиты с реле РНТ-565 (см. гл. 3) приведены на рис. 9-7 и 9-8.

Быстронасыщающийся трансформатор реле РНТ-565 является одновременно и промежуточным трансформатором для компенсации неравенства вторичных токов в плечах дифференциальной защиты и имеет для этой цели специальные уравнительные обмотки. Ток во вторичной обмотке БНТ, к которой подключено реле, определяется суммарным магнитным потоком в сердечнике, который создается как рабочей, так и уравнительными обмотками. Для того чтобы при прохождении через трансформатор сквозного тока нагрузки или к. з. ток во вторичной обмотке был равен нулю, необходимо правильно включить рабочую и уравнительные обмотки в дифференциальную схему и так подобрать число витков обмоток, чтобы компенсировать неравенство вторичных токов трансформаторов тока и установить необходимый ток срабатывания.

При выполнении дифференциальной защиты двухобмо-точного трансформатора (рис. 9-7) цепи от трансформаторов тока с обеих его сторон присоединяются к уравнительным обмоткам У1 и У2 так, чтобы при прохождении через трансформатор сквозного тока токи в уравнительных обмотках были направлены встречно. В принципе для компенсации неравенства вторичных токов трансформаторов тока можно было бы использовать только одну уравнительную обмотку БНТ. Однако при использовании обеих обмоток обеспечивается более точная компенсация неравенства вторичных токов.

Расчет дифференциальной защиты производится в следующей последовательности:

1) Определяется ток срабатывания защиты по первому условию по формуле (9-3), при коэффициенте надежности отстройки,

Определяется расчетный ток небаланса по формуле (9-11) и ток срабатывания по второму условию по формуле (9-5). Принимается большее значение тока срабатывания защиты Iс з.

2) Определяются первичные токи для всех обмоток защищаемого трансформатора (автотрансформатора), соответствующие номинальной мощности наиболее мощной обмотки трансформатора или проходной мощности автотрансформатора при среднем положении устройства регулирования напряжения, и вторичные токи в плечах дифференциальной защиты.

3) Определяется вторичный ток срабатывания, отнесенный к стороне с большим вторичным током:

 

где nT1— коэффициент трансформации трансформаторов тока с большим вторичным током.

4) Определяется расчетное число витков обмоток БНТ со стороны с большим вторичным током, которая называется основной:

где —суммарное число витков рабочей и первой уравнительной обмоток с основной стороны; 100 — намагничивающая сила срабатывания реле РНТ-565, А.

В соответствии с имеющимися на обмотках отпайками для регулирования числа витков принимается ближайшее меньшее к значение, которое может быть установлено на рабочей и первой уравнительной обмотках в сумме или на одной из этих обмоток полностью. Таким образом, установленное число витков с основной стороны в общем случае равно:

5) Определяется расчетное число витков со стороны с меньшим вторичным током, которая называется неосновной, из условия, чтобы при прохождении через трансформатор сквозного тока ток во вторичной обмотке В был равен нулю. Это условие выполняется, когда равен нулю суммарный магнитный поток в сердечнике БНТ, что имеет место при равенстве нулю магнитодвижущих сил, создаваемых его обмотками, т. е. при условии

В соответствии с имеющимися отпайками для регулирования числа витков второй уравнительной обмотки принимается ближайшее меньшее или большее значение, которое может быть установлено на этой обмотке,

6) После расчета чисел витков обмоток БНТ и подбора отпаек вычисляется по формуле (9-9) ток небаланса, вызванный неточной компенсацией вторичных токов, и суммарный расчетный ток небаланса по формуле (9-10). Затем по формуле (9-5) вновь определяется ток срабатывания дифференциальной защиты, и если он получился больше определенного в п. 1, то необходимо вновь пересчитать числа витков обмоток БНТ. Расчет повторяется до тех пор, пока ток срабатывания, определенный с учетом Iз.нб.расч станет равным или меньше тока срабатывания, определенного предыдущим расчетом.

7) Определяется коэффициент чувствительности при к. з. в зоне дифференциальной защиты при условиях, когда ток к. з. Iк.з.мин имеет наименьшее значение. В соответствии с рекомендациями [Л. 76] коэффициент чувствительности можно определять (упрощенно) по полному току к. з., отнесенному к основной стороне по формуле:

где Iср1 — вторичный ток срабатывания, отнесенный к основной стороне и определяемый по формуле (9-13);

Здесь Iк.з.мин — полный ток в месте к. з. в минимальном режиме.

Коэффициент чувствительности должен быть не менее двух.

При выполнении дифференциальной защиты трехобмо-точного трансформатора или автотрансформатора вначале аналогично предыдущему определяются первичные токи со всех сторон, соответствующие номинальной мощности наиболее мощной обмотки трансформатора или проходной мощности автотрансформатора, определяются вторичные токи в соответствующих плечах дифференциальной защиты и выявляется сторона с большим током.

Трансформаторы тока стороны с большим вторичным током, которая также называется основной (например, обмотка III на рис. 9-8), присоединяются непосредственно к рабочей обмотке Р, а трансформаторы тока двух других неосновных сторон присоединяются к уравнительным обмоткам У1 и У2.

Расчет дифференциальной защиты трехобмоточного трансформатора (автотрансформатора) производится в следующей последовательности:

1) Определяются токи срабатывания защиты по первому и второму условиям по формулам (9-3) и (9-5) соответственно. При этом расчетный ток небаланса определяется по формуле (9-11). По результатам расчетов принимается большее значение тока срабатывания I с.з.

2) Определяется вторичный ток срабатывания, отнесенный к основной стороне по формуле (9-13).

3) Определяется расчетное число витков рабочей обмотки по формуле (9-14). В соответствии с имеющимися отпайками для регулирования числа витков рабочей обмотки принимается ближайшее меньшее к значение

4) Определяются числа витков уравнительных обмоток исходя из условия равенства нулю суммарного магнитного потока в сердечнике БНТ аналогично двухобмоточному трансформатору.

Так, если отключена обмотка II, то указанному условию удовлетворяет равенство

откуда расчетное число витков первой уравнительной обмотки равно:

Аналогично, считая отключенной обмотку I, получаем формулу для определения расчетного числа витков второй уравнительной обмотки:

В соответствии с имеющимися отпайками для регулирования чисел витков уравнительных обмоток принимаются ближайшие меньшие или большие значения, которые могут быть установлены на этих обмотках

5) Вычисляется по формуле (9-9) расчетный ток небаланса, вызванный неточной компенсацией вторичных токов, и суммарный расчетный ток небаланса по формуле (9-10). Затем аналогично расчету двухобмоточного трансформатора производится пересчет тока срабатывания и определяется коэффициент чувствительности по формуле (9-16).

25. Упрощенная схема дифференциальной защиты с реле ДЗТ-11 (для одной фазы) приведена на рис. 6-8. На трехстержневом магнитопроводе НТТ, аналогичном тому, который применен в реле серии РНТ, помимо первичной обмотки разделенной на секции wyPi и Wyp2t и вторичной обмотки w2y расположенной на двух крайних стержнях, имеется еще тормозная обмотка кут, расположенная на тех же крайних стержнях. Тормозная обмотка включается в одно из плеч защиты и при внешнем к.з. по ней проходит вторичный ток к.з. Эта обмотка осуществляет «магнитное» торможение, т. е. автоматическое увеличение тока срабатывания защиты (загрубление) по мере увеличения тормозного тока /т, равного вторичному току к. з. Загрубление реле вызывается тем, что ток /т дополнительно насыщает магнитопровод НТТ реле ДЗТ, при этом ухудшается трансформация первичного тока НТТ в его вторичную обмотку w2 и, следовательно, уменьшается ток в исполнительном органе НО.
Зависимость тока срабатывания реле от тормозного тока называется тормозной характеристикой. Для реле с магнитным торможением тормозная характеристика представляется в виде зависимости магнитодвижущей силы, создаваемой рабочей обмоткой НТТ (wр на рис. 6-9, а) при прохождении по ней рабочего тока /Р (FP = Wplp), от магнитодвижущей силы, создаваемой тормозной обмоткой wT при прохождении по ней тормозного ТОКа /т == /2 к. макс. вн (Ft — WtI% к. макс. вн). Тормозные характеристики реле ДЗТ-11 представлены на рис. 6-9, б [19].

Рис. 6-8. Упрощенная схема дифференциальной защиты трансформатора на реле с НТТ и магнитным торможением серии ДЗТ-10 (для одной фазы) о>р и о>т — первичные рабочая и тормозная обмотки; w% — вторичная обмотка; ИО — исполнительный орган (реле РТ-40)
Из принципиальной схемы (рис. 6-9, а) видно, что при внешнем к. з. по тормозной обмотке проходит вторичный ток к. з., а по рабочей— ток небаланса, который намного меньше, что следует из выражений (6-4) — (6-7). Для обеспечения надежного несрабатывания защиты при внешнем к. з. число витков тормозной обмотки [5, 22, 23]
(6-9)
где /к. макс. вн — периодическая составляющая максимального тока к. з. на той стороне трансформатора, где включена тормозная обмотка, А; /нб — ток небаланса (первичный), определенный по выражениям (6-4) — (6-7), А; Дор — расчетное число витков рабочей обмотки реле на той стороне, где включена тормозная обмотка; kн — коэффициент надежности, принимаемый равным 1,5; tg а = FP/FT — тангенс угла наклона к горизонтальной оси (абсцисс) касательной, проведенной из начала координат к тормозной характеристике, соответствующей минимальному торможению (кривая 2 на рис. 6-9, б), для реле ДЗТ-11 принимается в пределах 0,75— 0,8 [19].
На рис. 6-9, б область, расположенная ниже характеристики 2, является областью надежного несрабатывания защиты (показан разомкнутый контакт реле). Область, расположенная на 10% выше характеристики 1, является областью надежного срабатывания защиты (показан замкнутый контакт реле).
В реле серии ДЗТ-10 (как и в ранее выпускавшемся аналогичном реле ДЗТ-1) отсутствует короткозамкнутая обмотка, имеющаяся в реле серии РНТ. Поэтому реле серии ДЗТ-10 несколько хуже отстроены от броска тока намагничивания при включении трансформатора под напряжение. И по условию надежной отстройки от броска этого тока необходимо устанавливать ток срабатывания дифференциальной защиты с реле серии ДЗТ-10 не менее чем 1,5/НОм тР [2, 22 и 23].
Для обеспечения надежности срабатывания дифференциальной защиты при к. з. в зоне действия на понижающих трансформаторах тормозная обмотка реле ДЗТ-11 (и ДЗТ-1) должна всегда включаться со стороны, противоположной питающей, т. е.

Рис. 6-9. Гокораспределение в дифференциальной защите с торможением (для одной фазы) при внешнем к. з. (а) и тормозные характеристики реле ДЗТ-11 (б)
на стороне НН и СН. Тогда при к.з. в зоне действия защиты торможения не будет.
Условия и примеры расчета уставок дифференциальной защиты с реле ДЗТ-11 (ДЗТ-1) приведены в работах [5 и 23].
Полные схемы дифференциальной защиты трансформаторов с реле ДЗТ-11. Типовые схемы дифференциальных защит понижающих трансформаторов с реле этой серии разработаны в Руководящих указаниях [23]. В дополнение к ним в работе [22] была предложена схема включения тормозной обмотки реле ДЗТ-11 (ДЗТ-1) на сумму токов сторон НН и СН трехобмоточных трансформаторов (рис. 6-10). В этой широко применяемой сейчас схеме тормозная обмотка обтекается током как при внешнем к.з. на стороне ННУ так и при внешнем к.з. на стороне СН. При к. з. в зоне торможение отсутствует.
Для тех случаев когда тормозная обмотка вынужденно включается на сторону, где есть питающий источник, необходимо, кроме расчетного определения чувствительности защиты с учетом торможения [23], произвести проверку надежности
срабатывания реле ДЗТ-11 при к.з. в зоне действия [22 или 5].

Схема включения трех реле типа ДЗТ-11 дифференциальной защиты трехобмоточного трансформатора приведена на рис. 6-11.
Рис. 6-10. Принципиальная схема включения рабочей (шр), уравнительных (a>ypi и Wyp2) и тормозной (дот) обмоток реле ДЗТ-11 на трехобмоточном трансформаторе (для одной фазы)
Тормозная обмотка у всех реле ДЗТ-11 включена в соответствии с рис. 6-10. При этом не предполагается питания трансфор-

Рис. 6-11. Принципиальная схема включения трех реле ДЗТ-11 (ТДТА, ТДТВ, ГДГС) дифференциальной защиты трехобмоточного трансформатора

26 Дифференциальная защита трехобмоточного трансформатора.


27 Дифференциально-фазная высокочастотная защита линий.

 

 


28 Направленная защита линий с высокочастотной блокировкой.


29 Особенности, учитываемые при выполнении дифференциальной защиты трансформаторов



Поделиться:


Последнее изменение этой страницы: 2016-09-18; просмотров: 968; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.9.7 (0.064 с.)