Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Повреждение и ненормальные режимы

Поиск

А)трёхфазное

е

 

Б)Двухфазное

В) Двухфазное короткое замыкание на землю в сети с заземленной нейтралью

Этот вид повреждения для сетей с изолированной нейтралью практически не отличается от двухфазного короткого замыкания. Токи, проходящие в месте к. з. и в ветвях рассматриваемой схемы, а также междуфазные напряжения в разных точках сети имеют те же самые значения, что и при двухфазном к. з.

Г) Однофазное короткое замыкание в сети с заземленной нейтралью

 

Однофазное короткое замыкание может иметь место только в сетях с заземленной нейтралью (в Советском Союзе, как правило, с заземленной нейтралью работают сети напряжением 110 кВ и выше). Векторные диаграммы токов и напряжений в месте однофазного к. з. фазы А приведены на рис. 1-21, а формулы, определяющие их основные соотношения:

 

 

6) Оперативный ток на объектах электроэнергетики

Назначение и общие требования

Оперативным током называется ток, питающий цепи дистанци­онного управления выключателями, оперативные цепи релейной защиты, автоматики, телемеханики и различные виды сигнализа­ции.

Питание оперативных цепей и особенно тех ее элементов, от ко­торых зависит отключение поврежденных линий и оборудования, должно отличаться особой надежностью. Поэтому главное тре­бование, которому должен отвечать источник оперативного тока, состоит в том, чтобы во время к.з. и при ненормальных режимах в сети напряжение источника оперативного тока и его мощность имели достаточную величину как для действия вспомогательных реле защиты и автоматики, так и для надежного отключения и включения соответствующих выключателей.

Для питания оперативных цепей применяются источники постоян ного и переменного тока.

Постоянный оперативный ток

В качестве источника постоянного тока используются акку­муляторные батареи с напряжением 110—220 В, а на небольших подстанциях 24—48 В, от которых осуществляется централизован­ное питание оперативных цепей всех присоединений (рис. 1-11). Для повышения надежности сеть постоянного тока секционируется на несколько участков, имеющих самостоятельное питание от сборных шин батареи.

Исправность предохранителей контролируется реле РС (рис. 1-11). Целость цепи отключения КО и блок-контактов БК обычно контролируется реле РК, дающим сигнал при обрыве цепи (рис. 1-12, а).

В сетях постоянного тока возможны замыкания па землю. В случае замыканий на землю в точках Кх и К2 (рис. 1-12, б) контакты реле РЗ шунтируются и в катушке отключения КО появляется ток, под действием которого выключатель может отключиться.

Чтобы предупредить подобные отключения, применяется контроль за появлением «земли» на постоянном токе. Контроль осуществляется при по­мощи вольтметров Vх и V2 и сигнального реле Рк, как показано на рис. 1-11.


Аккумуляторные батареи обеспечивают питание оперативных цепей в любой момент времени с необходимым уровнем напряже­ния и мощности независимо от состояния основной сети и поэтому являются самым надежным источником питания.

В то же время аккумуляторные батареи значительно дороже других источников оперативного тока, для них требуются заряд­ные агрегаты, специальное помещение и квалифицированный уход.

Переменный оперативный ток

Для питания оперативных цепей переменным током исполь­зуется ток или напряжение сети. В соответствии с этим в качестве источников переменного оперативного тока слу­жат трансформаторы тока, трансформаторы напряжения и трансформаторы собствен­ных нужд.

Трансформаторы тока являются весьма надеж­ным источником питания оперативных цепей для защит от к. з. При к. з. ток и напряжение на зажимах трансформаторов тока увеличиваются, поэтому в момент срабатывания защиты мощность трансформаторов тока возрастает, что и обеспечивает надежное питание оперативных цепей.

Однако трансформаторы тока не обеспечивают необходимой мощности при повреждениях и ненормальных режимах, не сопро­вождающихся увеличением тока на защищаемом присоединении.

Трансформаторы напряжения и транс­форматоры собственных нужд непригодны для питания оперативных цепей защит от к. з., так как при к. з. напря­жение в сети резко снижается и может в неблагоприятных случаях становиться равным нулю. В то же время при повреждениях и ненормальных режимах, не сопровождающихся глубокими пони­жениями напряжения в сети, трансформаторы напряжения и трансформаторы собственных нужд могут использоваться для питания таких защит, как, например, защиты от перегрузки, от замыканий на землю, повышения напряжения и т. д.

Схема с питанием от заряженного кон­денсатора. На рис. 1-16 дана упрощенная схема питания оперативных цепей от заряженного конденсатора. Конденсатор 1 питается от трансформатора напряжения через выпрямитель 2. В нормальном режиме конденсатор заряжен. При действии защиты он замыкается на катушку отключения, питая ее током разряда.


 

 

7)

СПОСОБЫ ИЗОБРАЖЕНИЯ РЕЛЕ И СХЕМ ЗАЩИТЫ НА ЧЕР­ТЕЖАХ

Применяются два принципиально различных способа изобра­жения схем защит и реле на чертежах.

По первому способу реле показываются в совме­щенном виде (рис. 1-7, б) и изображаются в виде прямоугольника с полукругом наверху. Обмотки реле подразумеваются располо­женными в нижней части (прямоугольнике) и обычно не показы­ваются, контакты реле рисуют в верхней части изображения (таким образом, контакты и обмотки реле совмещаются в одном изобра­жении). Тип реле обозначается начальной буквой наименования реле в нижней части изображения. Например: токовое реле обозна­чается буквой Т, реле напряжения — Н, промежуточное — П, мощности — М и т. д.

По второму способу реле показываются в развер­нутом виде (рис. 1-7, в). Обмотки реле и их контакты обозначают соответствующей буквой и рисуют раздельно на двух разных схемах (измерительных цепей и логических), исходя из сообра­жений большей наглядности схем (см. рис. 4-20, б, в, г).

В развернутых схемах цепи, питающиеся током сети, напря­жением сети и источником оперативного тока, показываются раз­дельно, что облегчает рассмотрение («чтение») схем с большим числом реле и сложной связью между ними.

В 1964 г. в СССР введен стандарт (ГОСТ 7624-62) [Л. 7] на гра­фические изображения электрических схем. В дальнейшем изложе­нии все схемы изображаются в соответствии с этим стандартом. Положение контактов реле на схемах условились изображать в состоянии, соответствующем отсутствию тока в обмотках реле. В книге, в отдельных случаях (для облегчения понимания схемы) контакты реле показываются в положении готовности устройства к действию (т. е. для нормального состояния защища­емого объекта). Такие случаи оговариваются в подписях под рисун­ками.

В последнее время в связи с применением защит с полупровод­никовыми приборами получили распространение блок-схемы или структурные схемы. Такие схемы (рис. 1-7, г) дают взаимосвязь между отдельными элементами (блоками) схемы. Каждый блок изображается прямоугольником с надписью или условным обозначением внутри прямоугольника. Блок-схемы должны дополняться схемой соединения каждого блока в отдель­ности.


Селективность.

Селективностью, или избирательностью, называется действие защиты, обеспечивающее отключение только поврежденного элемента системы посредством его выключателей.

Таким образом, требование селективности является основным условием для обеспечения надежного питания потребителей.

Селективное действие защит при наличии резервного питания потребителей дает возможность исключить перерывы в их электроснабжении.

При отсутствии резервирования даже при селективном действии защит возможна потеря питания.

Т.к. повреждение на ВЛ носят в основном проходящий характер наиболее эффективности в этом случае будет применение АПВ. АПВ обеспечивает 70-90% успешных включений.

Требование селективности не должно исключать возможность действия защит как резервных в случаях отказа защит или выключателей смежных элементов. Пример: отказ защит 8 при К.З.в К3.

 

Защиты с относительной селективностью могут срабатывать при внешних КЗ в режиме резервирования, но требуют для обеспечения согласования с защитами смежных элементов выдержки времени на срабатывание.

В целом селективность подразделяется по функциям защиты:

1. Селективность срабатывания при внутренних КЗ:
- защитоспособность;
- быстрота срабатывания:
- повышает устойчивость работы параллельных генераторов и увеличивает пропускную способность линий;
- уменьшает влияние снижения напряжения на работу потребителей;
- уменьшает размеры разрушения элементов токами КЗ;
- повышает эффективность АПВ;

2.Селективность срабатывания при внешних КЗ;
3.Селективность несрабатывания без КЗ.

 

 

9) ТОКОВАЯ ТРЕХСТУПЕНЧАТАЯ ЗАЩИТА

Сочетая максимальную защиту 1 с мгновенной отсечкой 3 и отсечкой с выдержкой времени 2, можно получить трехступенчатую защиту, обеспечивающую быстрое отключение повреждений на защищаемой линии Л1 и резервирующую защиту 4 и 5 следующего участка. Характеристика времени действия трех­ступенчатой токовой защиты показана на рис. 5-9. Протяженность зон меняется в зависимости от режима работы системы.

Обычно токовые ступенчатые защиты выполняются в виде трех ступеней:
Первая ступень - отсечка мгновенного действия, защищает начальный участок линии.
Вторая ступень - отсечка с выдержкой времени, предназначена для надежной защиты оставшегося участка линии.
Третья ступень - МТЗ, выполняет функции ближнего и дальнего резервирования.
Принцип действия токовой ступенчатой защиты рассмотрим на примере участка сети. На линии AБ установлена трехступенчатая токовая защита, на линии БB - двухступенчатая.

 


Расчет параметров.

Токи срабатывания первых ступеней защит А и Б, соответственно и отстраиваются от токов трехфазных КЗ на шинах противоположных подстанций:

где - коэффициент надежности; - для п/п реле; - для электромагнитных реле; - для индукционных реле.

Вторая ступень защиты А должна надежно охватывать защищаемую линию. Ее ток срабатывания согласуется с 1 ступенью защиты B: .

Выдержка времени принимается равной 0.5сек.

Ток срабатывания третьей ступени отстраивается от нагрузочных режимов, выдержка времени согласуется с защитами отходящих присоединений:


где - коэффициент возврата реле; - ток возврата реле; - ток срабатывания реле; - коэффициент самозапуска ().



Чувствительность 3 ступени оценивается для двухфазных режимов:

 


  1. При работе в режиме ближнего резервирования:

  2. В режиме дальнего резервирования:

 

10)



Поделиться:


Последнее изменение этой страницы: 2016-09-18; просмотров: 492; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.208.51 (0.011 с.)