Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Виды повреждений в электроустановках

Поиск

Конспект лекций по РЗ и А

Специальность 2-43 01 03 «электроснабжение» (по отраслям)

Витебск 2015


Виды повреждений в электроустановках

Повреждения в электрических системах чаще возникают на линиях сетей. Повреждения в обмотках электрических машин, и особенно таких аппаратов, как трансформаторы и автотрансформаторы, бывают реже, иногда имеют специфический характер, обусловленный их выполнением (например, витковые КЗ), и могут сопровождаться тяжелыми для них последствиями. Возможны и более сложные виды повреждений, представляющие сочетание некоторых из перечисленных.

Основные виды повреждений приведены

Трехфазные КЗ:

· КЗ между тремя фазами;

· трехфазные КЗ на землю.

· Двухфазные КЗ:

КЗ между двумя фазами;

· двухфазные КЗ на землю;

· двойное КЗ на землю.

Однофазные КЗ:

· однофазные КЗ и однофазные замыкания на землю;

· однофазное витковое КЗ.

Разрыв фазы.

Так, например, при разрыве провода линии у изолятора упавший на землю конец вызывает появление однофазного КЗ или однофазного замыкания (например, в сети с изолированными нейтралями) с разрывом фазы. Соотношения, подобные разрыву, возникают также при отказах в работе части фаз автоматических выключателей (характерны для воздушных выключателей с пофазным приводом). В процессе развития повреждений возможны также переходы одного вида повреждений в другой, чаще с охватом большего числа фаз. С другой стороны, внутри однофазных аппаратов многофазные КЗ (без земли) практически вообще невозможны.

Ненормальные режимы работы в электроустановках

К ненормальным режимам относятся режимы, связанные с отклонениями от допустимых значений величин тока, напряжения и частоты, опасные для оборудования или устойчивой работы энергосистемы.

Перегрузка оборудования, вызванная увеличением тока сверх номинального значения если ток, проходящий по оборудованию, превышает номинальное значение, то за счет выделяемого им дополнительного тепла температура токоведущих частей и изоляции через некоторое время превосходит допустимую величину, что приводит к ускоренному износу изоляции и ее повреждению. Для предупреждения повреждения оборудования при его перегрузке необходимо принять меры к разгрузке или отключению оборудования.

Качания в системах возникают при выходе из синхронизма работающих параллельно генераторов. При качаниях в каждой точке системы происходит периодическое изменение тока и напряжения. Ток во всех элементах колеблется от нуля до максимального значения, во много раз превышающего нормальную величину. Напряжение подает от нормального до некоторого минимального значения, имеющего разную величину в каждой точке системы. В электрическом центре качаний, оно снижается до нуля. Возрастание тока вызывает нагревание оборудования, а уменьшение напряжения нарушает работу всех потребителей системы. Качание – очень опасный ненормальный режим, отражающийся на работе всей энергосистемы.

Повышение напряжения сверх допустимого значения возникает на гидрогенераторах при внезапном отключении их нагрузки. Разгрузившийся гидрогенератор увеличивает частоту вращения, что вызывает возрастание ЭДС статора до опасных для его изоляции значений. Опасное для изоляции оборудования повышение напряжения может возникнуть также при одностороннем отключении или включении длинных линий электропередачи с большой емкостной проводимостью.

Изолированный режим работы нейтрали

Режим изолированной нейтрали используют при напряжении до 1 кВ только в электроустановках с повышенными требованиями безопасности (взрывоопасные установки и др.). При напряжении 6...35 кВ такой режим нейтрали рекомендован ПУЭ во всех электроустановках.

Причина широкого распространения режима работы с изолированной нейтралью заключается в том, что в такой сети замыкание одной фазы на землю не является КЗ. Сеть с изолированной нейтралью может эксплуатироваться до нескольких часов с замыканием фазы на землю. Ток замыкания на землю получается во много раз меньше, чем ток междуфазных КЗ. Это главное достоинство сети с изолированной нейтралью. В такой сети обычно нет необходимости в применении специальных быстродействующих защит от замыкания на землю, т. е. не требуются дополнительные затраты на выполнение и эксплуатацию защиты.

Однако при замыкании на землю обнаруживается такой недостаток сети, как возникающие перенапряжения на поврежденных фазах относительно земли.

В сети с изолированной нейтралью изоляция фаз относительно земли выбирается по линейному напряжению, чтобы сеть могла длительно работать с замыканием на землю.

Фазные напряжения в сети с изолированной нейтралью при замыканиях на землю могут превышать линейные напряжения, что обусловлено возникновением так называемой перемежающейся электрической дуги. Термин «перемежающаяся» означает, что электрическая дуга горит неустойчиво: загорается на некоторое время, затем гаснет и, спустя интервал времени, загорается вновь. Переходные процессы, возникающие в сети с учетом перемежающейся дуги, приводят к появлению перенапряжений, которые могут достигать (3,0+3,5) U, где U — амплитуда фазного напряжения в нормальном режиме. Такое часто приводит к пробою изоляции, особенно электродвигателей напряжением выше 1 кВ.

Наличие перенапряжений, обусловленных перемежающейся электрической дугой, является основным недостатком сети с изолированной нейтралью. Этот недостаток объясняет обилие предложений по оптимизации режима нейтрали городских электрических сетей.

Селективность

Селективностью, или избирательностью, называется действие защиты, обеспечивающее отключение только поврежденного элемента системы посредством его выключателей.

Быстродействие

В большинстве случаев к релейной защите, действующей при повреждениях на отключение, предъявляется требование быстродействия.Это определяется следующими основными соображениями:

  • Ускорение отключения повреждений повышает устойчивость параллельной работы генераторов в системе и дает возможность увеличить пропускную способность ВЛ электропередачи.

· Ускорение отключения повреждений уменьшает время работы потребителей при пониженном напряжении.

· Ускорение отключения повреждений уменьшает размер разрушения поврежденного элемента. Уменьшается время, затрачиваемое на проведение восстановительного ремонта и уменьшается затраты на него.4. Ускорение отключения повреждений повышает эффективность АПВ поврежденных ЛЭП.

Чувствительность

Релейная защита должна быть достаточно чувствительной к повреждениям и ненормальным режимам работы, которые могут возникнуть на защищаемых элементах электрической системы. Удовлетворение требований необходимой чувствительности в современных электрических сетях часто встречает ряд серьезных затруднений.

Надежность

Требование надежности состоит в том, что защита должна правильно и безотказно действовать на отключение выключателей оборудования при всех его повреждениях и нарушениях нормального режима работы, на действие при которых она предназначена и не действовать в режимах, при которых ее работа не предусматривается.

Способы включения реле тока

Обмотки реле могут включаться на ток и напряжение сети непосредственно или через измерительные трансформаторы тока и напряжения. Реле первого типа называются первичными, второго типа — вторичными. Наибольшее распространение имеют реле вторичные, преимущества которых по сравнению с первичными состоят в том, что они изолированы от высокого напряжения, располагаются на некотором расстоянии от защищаемого элемента, в удобном для обслуживания месте и могут выполняться стандартными на одни и те же номинальные токи 5 или 1 А и номинальные напряжения 100 Внезависимо от напряжения и тока первичной цепи защищаемого элемента.

Способы включения токовых реле:

а) первичных;

б) вторичных

Достоинством первичных реле является то, что для их включения не требуется измерительных трансформаторов, источников оперативного тока и контрольного кабеля. Первичные реле находят применение на электродвигателях, мелких трансформаторах и линиях малой мощности в сетях 3—6—10 кВ, т. е. там, где защита осуществляется по простейшим схемам посредством реле тока и напряжения и не требует большой точности. Во всех остальных случаях применяются вторичные реле.

Источники оперативного тока

Оперативный ток – питает цепи дистанционного управления выключателями, оперативные цепи релейной защиты, автоматики.

Основное требование к источникам оперативного тока – надежность, при КЗ и ненормальных режимах напряжение источников оперативного тока и их мощность должны иметь достаточную величину как для действия релейной защиты, так и для отключения выключателей.

Постоянный оперативный ток

Источниками данного тока являются аккумуляторные батареи напряжением 110...220 В. Для повышения надежности сеть постоянного тока секционируется. Аккумуляторные батареи обеспечивают питание независимо от состояния основной сети и являются самым надежным источником питания. К недостаткам можно отнести высокую стоимость, необходимость в зарядных агрегатах, сложную сеть постоянного тока.

Переменный оперативный ток

Источниками служат измерительные трансформаторы тока и напряжения, а также трансформаторы собственных нужд, подключаемые на ток и напряжение самой сети.

Трансформаторы напряжения и трансформаторы собственных нужд не пригодны для питания цепей релейной защиты при КЗ – так как напряжение в сети при этом резко снижается. Могут использоваться при ненормальных режимах: перегрузка, замыкание на землю.

Трансформаторы тока надежны для защит от КЗ – ток при этом увеличивается, мощность достаточна для питания оперативных цепей. Однако трансформаторы тока не обеспечивают необходимой мощности при повреждениях и ненормальных режимах, не сопровождающихся резким увеличением тока.

Чаще всего используется комбинированное питание от трансформаторов тока и напряжения. Принципиальная схема блоков питания типов БПТ.

Электромагнитные реле

Реле – автоматические приборы управления, обладающие релейным действием, т.е. скачкообразным изменением состояния управляемой цепи (например, еѐ замыкание или размыкание) при заданных значениях величин, характеризующих определенное отклонение режима контролируемого объекта.

Типы реле:

Электрические – реагируют на электрические величины.

Механические – реагируют на неэлектрические величины: скорость истечения жидкости или газа, уровень жидкости.

Тепловые – реагируют на количество выделенного тепла или изменение температуры.

Существуют три основные разновидности конструкций электромагнитных реле:

· с втягивающимся якорем;

· с поворотным якорем;

· с поперечным движением якоря.

Каждая конструкция содержит: электромагнит, состоящий из стального сердечника и обмотки, стальной подвижный якорь, несущий подвижный контакт, неподвижные контакты и противодействующую пружину.

Проходящий по обмотке ток Iр создает намагничивающую силу Iрωр, под действием которой возникает магнитный поток Ф, замыкающийся через сердечник электромагнита, воздушный зазор и якорь. Якорь намагничивается и притягивается к полюсу электромагнита, переместившись в конечное положение, якорь своим подвижным контактом замыкает неподвижные контакты реле.

Ток срабатывания Iср – наименьший ток, при котором реле срабатывает, Iср – это ток, при котором электромагнитная сила превосходит силу сопротивления пружины, трения и массы.

Ток срабатывания регулируют: изменяя количество витков обмотки реле, Iср меняется ступенчато; регулируя пружину, Iср меняется плавно.

Ток возврата – при уменьшении тока в обмотках реле происходит возврат притянутого якоря в исходное положение под действием пружины.

Iвоз – наибольший ток в реле, при котором возвращается в начальное положение.

Коэффициент возврата

У реле, реагирующих на возрастание тока (максимальных реле), Iср>Iвоз Ò kвоз<1.

По мере перемещения якоря воздушный зазор уменьшается, магнитное сопротивление уменьшается. Электромагнитный момент увеличивается, а сила противодействующей пружины остается постоянной, возникает избыточный момент. Для возврата якоря необходимо уменьшить ток.

Реле минимального действия – реле, действующее при уменьшении тока.

Для срабатывания необходимо уменьшить ток до значения, при котором момент пружины превзойдет электромагнитный момент.

Iср – наибольший ток, при котором отпадает якорь реле.

Iвоз – наименьший ток, при котором втягивается якорь реле,

Iвоз>Iср Ò kвоз>1.

Магнитоэлектрические реле

Магнитоэлектрическое реле (рис. 2-41) состоит из постоянного магнита 1, подвижной рамки 2, на которой намотана обмотка 3, питающаяся током Iр, и контактов 4. Принцип работы магнитоэлектрических реле основан на взаимодействии тока Iр в обмотке рамки с магнитным потоком постоянного магнита Ф.

Угол поворота рамки принимается небольшим (5—10°), а форма полюсов магнита подбирается таким образом, чтобы магнитное поле было равномерным.

Магнитоэлектрические реле реагируют на направление тока и поэтому, так же как и поляризованные реле, не могут работать на переменном токе.

Магнитоэлектрические реле имеют высокую чувствительность и малое потребление. Мощность срабатывания достигает 108—1010 Вт и превосходит чувствительность поляризованных реле, что объясняется наличием сильного поля постоянного магнита.

Обладая малым потреблением, магнитоэлектрические реле имеют слабую контактную систему с малой отключающей способностью. Зазор между контактами очень мал — около 0,5—0,3 мм. Для повышения чувствительности противодействующая пружина в магнитоэлектрических реле имеет небольшой момент, поэтому магнитоэлектрические реле отличаются плохим возвратом. Надежный возврат этих реле часто обеспечивается подачей в обмотку реле тормозного тока, действующего на размыкания контактов. Время действия реле равно 0,1—0,2 сек.

Магнитоэлектрические реле широко применяются в качестве нуль-индикаторов в схемах на выпрямленном токе.

Схема максимальной токовой защиты на реле прямого действия (типа РТВ)

В городских и сельских распределительных сетях 6—10 кв, а также на промышленных предприятиях в целях удешевления и упрощения защиты применяются реле прямого действия для выполнения токовых максимальных защит. Отечественная промышленность выпускает токовое реле прямого действия — мгновенные типа РТМ и с ограниченно зависимой характеристикой времени действия типа РТВ. Эти реле встраиваются в грузовые и пружинные приводы.

Схемы максимальной защиты прямого действия отличаются простотой и небольшой стоимостью.

Реле РТВ представляет собой электромагнитное реле со втягивающимся якорем (см. рис.). Нормально под действием пружины 3 якорь реле 2 находится в нижнем положении.

При токе Iр > IС.Р электромагнитная сила Рэ > Рп и якорь реле втягивается и сжимает пружину 3, которая давит на стопорное кольцо 5 ударника 4, стремясь поднять последний вверх. Однако движение ударника несвободно, оно тормозится часовым механизмом 6. Чем больше ток /р, тем больше сжимается пружина под действием силы Рэ и тем быстрее будет двигаться часовой механизм.

Следовательно, время, необходимое для перемещения ударника из начального положения до момента удара по отключающему рычагу 8 привода, зависит от величины тока /р. При /р ра 3/с р пружина сжимается до предела и дальнейшие увеличения тока не сопровождаются изменением скорости движения часового механизма. В конце хода ударник расцепляется с часовым механизмом. Благодаря этому его скорость и обусловленная ею кинетическая энергия ударника резко увеличиваются и он с возросшей силой ударяет по рычагу 8, отключая выключатель.

Недостатки реле прямого действия. Погрешность по времени действия достигает ±0,3 сек. Поэтому при выборе выдержки времени на защите с РТВ ступень селективности принимается равной 0,8 сек. Обмотка реле имеет значительное потребление около 50ВА при токе срабатывания. Поэтому трансформаторы тока, питающие реле прямого действия, достаточно сильно загружены. По мере втягивания якоря 2 и перемещения ударника 4 вверх потребление реле растет. Точность трансформаторов тока должна быть обеспечена при токе срабатывания реле.


Конспект лекций по РЗ и А

Специальность 2-43 01 03 «электроснабжение» (по отраслям)

Витебск 2015


Виды повреждений в электроустановках

Повреждения в электрических системах чаще возникают на линиях сетей. Повреждения в обмотках электрических машин, и особенно таких аппаратов, как трансформаторы и автотрансформаторы, бывают реже, иногда имеют специфический характер, обусловленный их выполнением (например, витковые КЗ), и могут сопровождаться тяжелыми для них последствиями. Возможны и более сложные виды повреждений, представляющие сочетание некоторых из перечисленных.

Основные виды повреждений приведены

Трехфазные КЗ:

· КЗ между тремя фазами;

· трехфазные КЗ на землю.

· Двухфазные КЗ:

КЗ между двумя фазами;

· двухфазные КЗ на землю;

· двойное КЗ на землю.

Однофазные КЗ:

· однофазные КЗ и однофазные замыкания на землю;

· однофазное витковое КЗ.

Разрыв фазы.

Так, например, при разрыве провода линии у изолятора упавший на землю конец вызывает появление однофазного КЗ или однофазного замыкания (например, в сети с изолированными нейтралями) с разрывом фазы. Соотношения, подобные разрыву, возникают также при отказах в работе части фаз автоматических выключателей (характерны для воздушных выключателей с пофазным приводом). В процессе развития повреждений возможны также переходы одного вида повреждений в другой, чаще с охватом большего числа фаз. С другой стороны, внутри однофазных аппаратов многофазные КЗ (без земли) практически вообще невозможны.



Поделиться:


Последнее изменение этой страницы: 2016-04-26; просмотров: 4340; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.42.5 (0.009 с.)