Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Теоретические основы переработки нефти.↑ Стр 1 из 6Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Курсовая работа по дисциплине «Экономика корпорации»
на тему: «Оценка потенциала компании ОАО «Башнефть»»
Выполнил студент очной формы обучения специальности менеджмент организации специализации международный бизнес химических товаров 3 курса 1 группы _______________ В.В. Шевчук (подпись)
Руководитель работы _______________ Н.В.Зиньковская к.э.н. профессор (подпись)
Москва-2011 Содержание Введение……………………………………………………………………..3 1.Теоретическая часть………………………………………………………4 1.1.История переработки…………………………………………………..4 1.2.Теоретические основы переработки нефти…………………………..7 1.3.Требования к качеству нефти………………………………………..14 1.4.Виды нефтепродуктов………………………………………………..18 2.Аналитическая часть……………………………………………………..23 2.1.История компании……………………………………………………..23 2.2.Нефтепереработка и нефтехимия……………………………………..26 2.2.1.ОАО «Новойл»………………………………………………………30 2.2.2.ОАО «Уфанефтехим»……………………………………………….33 2.2.3.ОАО «Уфаоргсинтез»……………………………………………….36 2.2.4.ОАО «УНПЗ»………………………………………………………..38 2.3.Продажа нефтепродуктов……………………………………………...41 3.Практическая часть……………………………………………………….49 3.1.Предполагаемое развитие ОАО «Башнефть»………………………..49 Заключение…………………………………………………………………55
ВВЕДЕНИЕ Роль нефти в мировой экономике исключительно велика. Нефть и продукты ее переработки используются почти во всех отраслях народного хозяйства: на транспорте и в медицине, в судостроении и сельском хозяйстве, текстильной промышленности и энергетике. Нефть служит в основном дешевыми источниками энергии, но с развитием химической промышленности они все более широко используются в качестве химического сырья. Сейчас из нефти получают самые разнообразные продукты: синтетические волокна, пластмассы, органические кислоты, бензины, спирты, синтетические растворители и многое другое. В настоящее время для нефтепереработки России характерны следующие проблемы: низкая глубина переработки нефти, высокая изношенность основных фондов, низкое качество нефтепродуктов. В данной курсовой работе мы рассмотрим основную характеристику и динамику развития компании «Башнефть», изучим подробнее стратегию развития. Целью курсовой работы будет оценка потенциала компании «Башнефть»
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ ИСТОРИЯ ПЕРЕРАБОТКИ НЕФТИ Во второй половине XIX—начале XX века зародилась и получила широкое развитие нефтеперерабатывающая промышленность. В 1870 г. мировая добыча нефти составляла 0,7 млн тонн, в 1913 г. она достигла 52,3 млн тонн. Вначале из нефти получали керосин, затем — керосин и масла, позже — керосин, масла и бензин.
Перегонка На начальных этапах развития нефтехимической промышленности сырая нефть подвергалась так называемой периодической перегонке в вертикальном цилиндрическом перегонном аппарате. Процессы дистилляции были неэффективны, потому что отсутствовали ректификационные колонны и не получалось чистого разделения продуктов перегонки. Развитие процесса периодической перегонки привело к использованию общей ректификационной колонны, из которой с различных уровней отбирались дистилляты с разной температурой кипения. Эта система используется и сегодня. Поступающая нефть нагревается в змеевике примерно до 320° С, и разогретые продукты подаются на промежуточные уровни в ректификационной колонне. Такая колонна может иметь от 30 до 60 расположенных с определенным интервалом поддонов и желобов, каждый из которых имеет ванну с жидкостью. Через эту жидкость проходят поднимающиеся пары, которые омываются стекающим вниз конденсатом. При надлежащем регулировании скорости обратного стекания (т.е. количества дистиллятов, откачиваемых назад в колонну для повторного фракционирования) возможно получение бензина наверху колонны, керосина и светлых горючих дистиллятов точно определенных интервалов кипения на последовательно снижающихся уровнях. Обычно для того, чтобы улучшить дальнейшее разделение, остаток от перегонки из ректификационной колонны подвергают вакуумной дистилляции. Конструкция ректификационных колонн в нефтеперерабатывающей промышленности становится произведением искусства, в котором ни одна деталь не остается без внимания. Путем очень точного контроля температуры, давления, а также потоков жидкостей и паров разработаны методы сверхтонкого фракционирования. Эти колонны достигают высоты 60 м и выше и позволяют разделять химические соединения, т.кип. которых отличается менее чем на 6° С. Они изолированы от внешних атмосферных воздействий, а все этапы дистилляции автоматически контролируются. Процессы в некоторых таких колоннах происходят в условиях высоких давлений, в других – при давлениях, близких к атмосферному; аналогично температуры изменяются от экстремально высоких до значений ниже –18° С. Термический крекинг Склонность к дополнительному разложению более тяжелых фракций сырых нефтей при нагреве выше определенной температуры привела к очень важному успеху в использовании крекинг-процесса. Когда происходит разложение высококипящих фракций нефти, углерод-углеродные связи разрушаются, водород отрывается от молекул углеводородов и тем самым получается более широкий спектр продуктов по сравнению с составом первоначальной сырой нефти. Например, дистилляты, кипящие в интервале температур 290–400° С, в результате крекинга дают газы, бензин и тяжелые смолоподобные остаточные продукты. Крекинг-процесс позволяет увеличить выход бензина из сырой нефти путем деструкции более тяжелых дистиллятов и остатков, образовавшихся в результате первичной перегонки. Выход кокса определяется природой перерабатываемого сырья и степенью рециклизации наиболее тяжелых фракций. Как правило, из исходного крекируемого объема образуется примерно 15–25% лигроина и 35–50% газойля (т.е. легкого дизельного топлива) наряду с крекинг-газами и коксом. Последний используется в основном как топливо, исключая образующиеся специальные виды кокса (один из них является продуктом обжига и используется при производстве углеродных электродов). Коксование до сих пор пользуется популярностью главным образом как процесс подготовки исходного материала для каталитического крекинга. Процесс Гудри. Исследования Э.Гудри огнеупорных глин как катализаторов привели к созданию в 1936 эффективного катализатора на основе алюмосиликатов для крекинг-процесса. Среднекипящие дистилляты нефти в этом процессе нагревались и переводились в парообразное состояние; для увеличения скорости реакций расщепления, т.е. крекинг-процесса, и изменения характера реакций эти пары пропускались через слой катализатора. Реакции происходили при умеренных температурах 430–480° С и атмосферном давлении в отличие от процессов термического крекинга, где используются высокие давления. Процесс Гудри был первым каталитическим крекинг-процессом, успешно реализованным в промышленных масштабах. Целью большинства крекинг-процессов является достижение оптимального выхода бензина. При крекинге происходят распад тяжелых молекул, а также сложные процессы синтеза и перестройки структуры молекул углеводородов. Влияние разных катализаторов различно. Некоторые из них, такие, как оксиды хрома и молибден, ускоряют реакцию дегидрогенизации (отщепление водорода). Глины и специальные алюмосиликатные составы, используемые в промышленном каталитическом крекинге, способствуют ускоренному разрыву углерод-углеродных связей больше, чем отрыву водорода. Они также способствуют изомеризации линейных молекул в разветвленные. Эти составы замедляют полимеризацию (см. ниже) и образование дегтя и асфальта, так что нефти не просто деструктурируются, а обогащаются полезными компонентами. Риформинг Риформинг – это процесс преобразования линейных и нециклических углеводородов в бензолоподобные ароматические молекулы. Ароматические углеводороды имеют более высокое октановое число, чем молекулы других углеводородов, и поэтому они предпочтительней для производства современного высокооктанового бензина. При термическом риформинге, как и при каталитическом крекинге, основная цель состоит в превращении низкооктановых бензиновых компонентов в более высокооктановые. Процесс обычно применяется к парафиновым фракциям прямой перегонки, кипящим в пределах 95–205° С. Более легкие фракции редко подходят для таких превращений. Существуют два основных вида риформинга – термический и каталитический. В первом соответствующие фракции первичной перегонки нефти превращаются в высокооктановый бензин только под воздействием высокой температуры; во втором преобразование исходного продукта происходит при одновременном воздействии как высокой температуры, так и катализаторов. Более старый и менее эффективный термический риформинг используется кое-где до сих пор, но в развитых странах почти все установки термического риформинга заменены на установки каталитического риформинга. Если бензин является предпочтительным продуктом, то почти весь риформинг осуществляется на платиновых катализаторах, нанесенных на алюминийоксидный или алюмосиликатный носитель. Большинство установок риформинга – это установки с неподвижным слоем. (Процесс каталитического риформинга, в котором используется стационарный катализатор, называется платформингом.) Но под действием давления ок. 50 атм (при получении бензина с умеренным октановым числом) активность платинового катализатора сохраняется примерно в течение месяца. Установки, в которых используется один реактор, приходится останавливать на несколько суток для регенерации катализатора. В других установках используется несколько реакторов с одним добавочным, где проводится необходимая регенерация. Жизнь платинового катализатора сокращается при наличии серы, азота, свинца и других «ядов». Там, где эти компоненты представляют проблему, обычно до входа в реактор проводят предварительную обработку смеси водородом (т.н. гидроочистка, когда до подачи в реактор нефтяных погонов – бензинов прямой перегонки – их пропускают через водородсодержащие газы, которые связывают вредные компоненты и снижают их содержание до допустимых пределов). Некоторые реакторы с неподвижным слоем заменяются на реакторы с непрерывной регенерацией катализатора. В этих условиях катализатор перемещается через реактор и непрерывно регенерируется. Реакции, в результате которых при каталитическом риформинге повышается октановое число, включают: 1) дегидрирование нафтенов и их превращение в соответствующие ароматические соединения; 2) превращение линейных парафиновых углеводородов в их разветвленные изомеры; 3) гидрокрекинг тяжелых парафиновых углеводородов в легкие высокооктановые фракции; 4) образование ароматических углеводородов из тяжелых парафиновых путем отщепления водорода. Большинство богатых водородом газов, выделяющихся в этих установках, используются при гидрокрекинге и т.п. Полимеризация. Полимеризация пропилена – олефина, содержащего три атома углерода, и бутилена – олефина с четырьмя атомами углерода в молекуле дает жидкий продукт, который кипит в тех же пределах, что и бензин, и имеет октановое число от 80 до 82. Нефтеперерабатывающие заводы, использующие процессы полимеризации, обычно работают на фракциях крекинг-газов, содержащих олефины с тремя и четырьмя атомами углерода. Алкилирование. В этом процессе изобутан и газообразные олефины реагируют под действием катализаторов и образуют жидкие изопарафины, имеющие октановое число, близкое к таковому у изооктана. Вместо полимеризации изобутилена в изооктен и затем гидрогенизации его в изооктан, в данном процессе изобутан реагирует с изобутиленом и образуется непосредственно изооктан. Все процессы алкилирования для производства моторных топлив производятся с использованием в качестве катализаторов либо серной, либо фтороводородной кислоты при температуре сначала 0–15° C, а затем 20–40° С. Изомеризация. Другой важный путь получения высокооктанового сырья для добавления в моторное топливо – это процесс изомеризации с использованием хлорида алюминия и других подобных катализаторов. Изомеризация используется для повышения октанового числа природного бензина и нафтенов с прямолинейными цепями. Улучшение антидетонационных свойств происходит в результате превращения нормальных пентана и гексана в изопентан и изогексан. Процессы изомеризации приобретают важное значение, особенно в тех странах, где каталитический крекинг с целью повышения выхода бензина проводится в относительно незначительных объемах. При дополнительном этилировании, т.е. введении тетраэтилсвинца, изомеры имеют октановые числа от 94 до 107 (в настоящее время от этого способа отказались ввиду токсичности образующихся летучих алкилсвинцовых соединений, загрязняющих природную среду). Гидрокрекинг Ранние работы по получению жидкого топлива из углей путем гидрирования под высоким давлением (процесс Бергуса) проводились главным образом в Германии с использованием весьма сильных катализаторов, таких, как оксиды молибдена, которые либо нечувствительны к присутствию серы, либо в значительной степени сохраняют свою активность после прошедшей сульфатизации. Для этого были необходимы следующие параметры: давление до 280 атм, температура ок. 450° С и катализатор. Давления, используемые в современных процессах гидрокрекинга, составляют от примерно 70 атм для превращения сырой нефти в сжиженный нефтяной газ (LP-газ) до более чем 175 атм, когда происходят полное коксование и с высоким выходом превращение парообразной нефти в бензин и реактивное топливо. Процессы проводят с неподвижными слоями (реже в кипящем слое) катализатора. Процесс в кипящем слое применяется исключительно для нефтяных остатков – мазута, гудрона. В других процессах также использовались остаточное топливо, но в основном – высококипящие нефтяные фракции, а кроме того, легкокипящие и среднедистиллятные прямогонные фракции. Катализаторами в этих процессах служат сульфидированные никель-алюминиевые, кобальт-молибден-алюминиевые, вольфрамовые материалы и благородные металлы, такие, как платина и палладий, на алюмосиликатной основе. Там, где гидрокрекинг сочетается с каталитическим крекингом и коксованием, не менее 75–80% сырья превращается в бензин и реактивное топливо. Выработка бензина и реактивных топлив может легко изменяться в зависимости от сезонных потребностей. При высоком расходе водорода выход продукции на 20–30% выше, чем количество сырья, загружаемого в установку. С некоторыми катализаторами установка работает эффективно от двух до трех лет без регенерации. Необходимость уменьшения загрязнения воздуха в промышленных районах США, Западной Европы и Японии обусловливает значительное увеличение использования процессов гидрирования для десульфатизации дистиллятов и остаточных топлив. Процессы гидрокрекинга, предназначенные главным образом для удаления серы при невысоких требованиях к выходу продукции, известны как «гидроочистка». Газообразные легкие фракции прежде всего проходят через вакуумную установку для сжижения, затем полученный на этой стадии газойль проходит десульфуризацию гидроочисткой, прежде чем вновь смешивается с некоторыми вакуумными остатками и другими низкосернистыми легкими фракциями сырой нефти. Очистка легких продуктов. Гидроочистка в настоящее время – наиболее распространенный метод гидрогенизации олефинов и повышения качества легких продуктов за счет удаления серы и других примесей. По экономическим причинам, а также из-за проблем, связанных с примесями воздуха и воды, применяются и другие методы, например использование сульфида свинца в качестве катализатора в регенеративных растворителях и предварительное рафинирование с применением высоковольтных электропечей для лучшего отделения очищающего реагента от получаемого продукта.
ТРЕБОВАНИЯ К КАЧЕСТВУ НЕФТИ. Нефть - это смесь разнообразных углеводородных соединений. Нефть из различных скважин может значительно отличаться по химическому и фракционному составу. 1. Плотность нефти 2. Фракционный состав 3. Содержание серы в нефти 4. Содержание парафинов в нефти 5. Содержание воды в нефти 6. Содержание солей в нефти Параметры 1-4 важны для получения товарного дизельного топлива. Параметры 3, 5, 6 важны для нормальной и длительной эксплуатации установки. Плотность нефти Плотность нефти зависит от соотношения количества легкокипящих и тяжелых фракций. Как правило, в легкой нефти преобладают легкокипящие компоненты (бензиновая и дизельная фракции). Фракционный состав нефти Фракционный состав определяется при лабораторной перегонке, в процессе которой при постепенно повышающейся температуре из нефти отгоняют фракции, отличающиеся друг от друга пределами выкипания. Каждая из фракций характеризуется температурами начала и конца кипения. Фракции, выкипающие до 350°С, называют светлыми дистиллятами (фракциями). В основном, при атмосферной перегонке получают следующие светлые дистилляты: бензиновая фракция - до 180°С, дизельная фракция - 180-350°С. Фракция, выкипающая выше 350°С является остатком после отбора светлых дистиллятов и называется мазутом. Содержание серы в нефти Сера и ее соединения являются постоянными составляющими частями сырой нефти. Соединения серы токсичны, имеют неприятный запах, способствуют отложению смол, в соединениях с водой вызывают интенсивную коррозию оборудования НПУ и топливной арматуры двигателей. Особенно в этом отношении опасны сероводород и меркаптаны. Кроме того, соединения серы в топливе приводят к загрязнению окружающей среды. Содержание парафинов в нефти Высокое содержание парафинов в нефти приводит к их попаданию в дизельное топливо. Это приводит к ухудшению температуры помутнения и застывания дизельного топлива. Также высокое содержание парафина приводит к повышению температуры застывания мазута. · Получать только летнее дизельное топливо · Изменить технологические параметры дистилляции для подрезания высококипящих фракций и уменьшения содержания парафинов в дизельном топливе. · Разбавлять нефть газовым конденсатом. · Добавлять специальные депрессорные присадки, которые улучшают температуру помутнения и застывания. Содержание воды в нефти При большом содержании воды в нефти, поступающей на НПУ, нарушается технологический режим работы, повышается давление в аппаратах, начинаются микровзрывы, снижается производительность ректификационной колонны и теплообменных аппаратов, а также расходуется дополнительное количество тепла на подогрев нефти. Содержание воды в нефти, направляемой на НПУ, должно быть минимальным. Исходя из нашего опыта, содержание воды в нефти не должно превышать 0,1-0,5% вес. Содержание солей в нефти Как было указано выше, присутствие в нефти солей, особенно хлористых, и воды приводит в результате нагрева к сильной коррозии оборудования НПУ. Поэтому содержание солей в нефти не должно превышать 5-20 мг/л. При более высоком содержании солей в нефти срок службы оборудования значительно снижается. Для снижения концентрации солей в нефти на промыслах и на больших перерабатывающих заводах используют специальные процессы обессоливания нефти.
ВИДЫ НЕФТЕПРОДУКТОВ. Бензин Бензин – самый важный продукт переработки нефти; из сырой нефти производится до 50% бензина. Эта величина включает природный бензин, бензин крекинг-процесса, продукты полимеризации, сжиженные нефтяные газы и все продукты, используемые в качестве промышленных моторных топлив. Каждому процессу переработки нефти предъявляются требования по количеству и качеству производимого бензина. Промышленный бензин представляет собой смесь углеводородов в интервале т.кип. 30–200° C. Некоторые бутаны, кипящие при температуре ниже 38° С, имеет высокое давление паров. Углеводороды в бензине включают многие изопарафины, а также ароматические углеводороды и нафтены, а в бензинах, полученных при крекинге, содержится от 15 до 25% олефинов. Октановое число углеводородов снижается в следующем порядке: изопарафины > ароматические > олефины > нафтены > н-парафины. Имеются различия между компонентами каждой из этих групп, зависящие от структуры молекул и точки кипения. Различные компоненты дают свой вклад в октановое число бензиновых смесей. Крекинг-бензины содержат значительный процент тех компонентов, при смешении которых образуется моторное топливо. Однако их прямое использование во многих странах законодательно ограничивается, поскольку они содержат заметное количество олефинов, а именно олефины являются одной из главных причин образования фотохимического смога. Большинство бензинов кипит в интервале 30–200° С. 50%-ная точка, т.е. температура, при которой кипит половина компонентов смеси и которая определяет состав смеси во время прогрева двигателя, а частично и при разгоне транспортного средства, располагается в пределах 98–104° С. Высокое содержание низкокипящих компонентов, таких, как бутаны и пентаны, обусловливает исключительно высокое давление паров и в теплое время является причиной образования паровых пробок, когда газовые пузырьки препятствуют течению топлива по узким трубам двигателей и тепловых установок. В то же время недостаток низкокипящих компонентов служит причиной трудностей запуска двигателя зимой. 90%-ная точка кипения бензина определяет время прогрева двигателя и эффективность использования топлива. Октановое число – наиболее важная характеристика бензина. Оно обычно определяется в одноцилиндровой стационарной установке, снабженной различными приборами для регистрации склонности к детонации. Нормальный гептан (семь атомов углерода в линейной цепи) детонирует очень легко; для него принято нулевое октановое число. Изооктан (восемь атомов углерода в разветвленной цепи) не детонирует до тех пор, пока не будут достигнуты экстремальные условия давления, температуры и нагрузки; для него произвольно установлено октановое число 100. При испытании бензина с неизвестными детонационными свойствами его сравнивают со смесью гептана и изооктана, имеющей такую же способность к детонации, как и испытуемый бензин; октановое число бензина – это процентное содержание изооктана в такой смеси. Октановое число, определенное таким образом, не всегда соответствует характеристике в многоцилиндровом двигателе в дорожных условиях при изменяющихся скоростях, нагрузках и ускорениях. В нефтяной промышленности используются два метода, делающие это сравнение более реальным, – моторный метод и исследовательский метод. Октан
|
||||
Последнее изменение этой страницы: 2016-09-13; просмотров: 680; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.142.141 (0.019 с.) |