Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Установка первичной переработки нефти

Поиск

Выбор и обоснование технологической схемы установки первичной переработки нефти (АВТ)

 

Блок ЭЛОУ

 

В блоке ЭЛОУ для получения обессоленной нефти с содержанием хлористых солей Ј1 мг/л при степени обессоливания в каждой ступени 95% устанавливается две ступени обессоливания [13]. Это позволяет довести содержание хлористых солей после первой ступени до 5,95 мг/л, т.к.

119 – 119 Ч 0,95 = 5,95 мг/л и после второй ступени до ~0,3 мг/л, т.к.

5,95 – 5,95 Ч 0,95» 0,3 мг/л.

где 119 – содержание хлористых солей в сырой нефти, мг/л (см.таблицу 2.1).

 

Концентрация хлористых солей в воде, находящейся в сырой нефти:

Концентрация хлористых солей в воде, находящейся в обессоленной нефти:

где 0,0067 – содержание воды в сырой нефти, масс. доля (0,67%);

0,8895 – относительная плотность нефти;

1 – содержание хлористых солей в обессоленной нефти, мг/л;

0,001 – содержание воды в обессоленной нефти, масс. доля (0,1 % масс.).

Для понижении концентрации хлористых солей в воде подают промывную воду.

Расход промывной воды (В) определяется из уравнения:

Для девонской нефти с учетом вышеуказанных концентраций солей в воде это уравнение имеет вид:

,

откуда В=16,85 л/м3 нефти или 1,685 % об. на нефть. Обычно промывную воду подают с избытком 50-200%. В данном случае принимается расход промывной воды 2,0% на нефть.

Для уменьшения неутилизируемых отходов (соленые стоки) свежая промывная вода подается только во вторую ступень обессоливания, а дренажная вода из электродегидраторов второй ступени поступает в электродегидраторы первой ступени через прием сырьевого насоса (3% об.), т.е. применяется циркуляция воды.

Дренажные воды из электродегидраторов сбрасываются в специальную емкость для отстоя, а после отстоя – в канализацию соленых вод и далее на очистные сооружения. Деэмульгатор неионогенного типа подается в количестве 8 г/т нефти в виде 2% водного раствора (400 г/т) на прием сырьевого насоса из специальной емкости. В связи с этим в технологической схеме установки АВТ предусматриваются дополнительные емкости и насосы.

 

Блок колонн

 

3.2.1 Атмосферный блок

В настоящее время наиболее распространены три вида оформления атмосферного блока:

с одной сложной ректификационной колонной

с предварительным испарителем

с отбензинивающей колонной

Рис. 3.1. Атмосферный блок.

 

Схему 1 применять нецелесообразно. Она рассчитана на переработку стабилизированных нефтей с содержанием бензиновых фракций до 10%(масс.), а в нашем случае – 13,5%(масс.). Переработка нефтей с высоким содержанием растворенного газа и низкокипящих фракций по этой схеме затруднительна, так как повышается давление на питательном насосе до печи, наблюдается нестабильность температурного режима и давления в основной колонне из-за колебаний состава сырья, невозможность конденсации легких бензиновых фракций, насыщенных газообразными компонентами, при низком давлении в воздушных конденсаторах. Повышение же давления в колонне уменьшает четкость фракционирования.

В схеме 2 одновременная ректификация в одной колонне легких и тяжелых фракций снижает температуру печи, но при высоком содержании бензиновых фракций и растворенных газов атмосферная колонна чрезмерно перегружается по парам, что заставляет увеличивать ее диаметр. Все коррозионно-активные вещества попадают вместе с парами из испарителя в колонну, т.е. испаритель не защищает атмосферную колонну от коррозии.

Схема 3 (рис. 3.1.) самая распространенная в отечественной практике. Она наиболее гибка и работоспособна при значительном изменении содержания бензиновых фракций и растворенных газов. Коррозионно-агрессивные вещества удаляются через верх первой колонны, таким образом, основная колонна защищена от коррозии. Благодаря предварительному удалению бензиновых фракций в змеевиках печи и теплообменниках не создается высокого давления, что позволяет устанавливать более дешевое оборудование без усиления его прочности. Но при работе по этой схеме следует нагревать нефть в печи до более высокой температуры, чем при однократном испарении, вследствие раздельного испарения легких и тяжелых фракций. Кроме того, установка оборудована дополнительной аппаратурой.

В отбензинивающей колонне К-1 дистиллятом будут являться растворенные газы С2-С4 и фракция нк-140 0С – нестабильный бензин, который направляем на блок стабилизации в колонну К-3 для извлечения из нестабильного бензина растворенных газов. Это позволяет полностью удалить газы из жидкой фазы уже на входе в колонну К-2 вследствие чего колонна работает при более низком давлении температуре. Уменьшается металлоемкость и стоимость оборудования, затраты на нагрев сырья. Кроме того, в колонне К-1 наряду с газами С2- С4 удаляются солёная вода и коррозионно-активные газы, что благоприятно влияет на сохранность последующего ректификационного и теплообменного оборудования.

В колоннах К-1 и К-2 устанавлаваем клапанные тарелки, которые эффективно работают в широком интервале нагрузок.

В основной атмосферной колонне К-2 дистиллятом будет являться фракция нк-140оС; фракции 140-180 0С, 180-230°С и 230-360°С выводятся боковыми продуктами в жидком виде, снизу колонны выводится мазут (>360°С). Фракцию нк-140оС объединяем с продуктом колонны К-1 и направляем на блок стабилизации. Фракцию 180-230°С можем использовать после гидроочистки как компонент зимнего ДТ или в смеси с фракцией 230-360°С как летнее дизельное топливо – в этом случае фракции объединяем после блока теплообменников. Для четкости разделения фракций применяем стриппинги.

Данная схема, в случае необходимости, позволяет получать керосиновую фракцию (140-180 0С+180-230°С), что положительно сказывается на возможном ассортименте нефтепродуктов.

В низ колонны подается водяной пар в количестве 1% на отбензиненную нефть. Для отвода тепла в основной атмосферной колонне К-2 применяем три циркуляционных (верхнее, среднее и нижнее) орошения, теплоту которых используем для подогрева сырой нефти.

 

3.2.2. Блок стабилизации и чёткой ректификации.

Стабилизации подвергаем бензин из К-1 и фракцию нк-140оС сверху К-2. Согласно рекомендациям [18] блок стабилизации оснащается стабилизатором и несколькими простыми ректификационными колонами числом на единицу меньшим, чем количество выводимых фракций. В нашем случае – одна колонна четкой ректификации, что соответствует заданию. В колонне К-3 производим разделение нестабильного бензина на газ и бензин. Температура в низу стабилизационной колонны поддерживается за счет циркуляции через испаритель нижнего продукта, что позволяет отказаться от печи и снизить расход топлива и выбросы дымовых газов. Стабильный бензин из куба колонны стабилизации отправляется в колонну чёткой ректификации К-4 с целью получения сырья процессов изомеризации (нк-70оС) и каталитического риформинга (70-140оС).

Рис. 3.2. Блок стабилизации бензина.

 

Из-за отсутствия в нефти растворенного метана и малого количества этана получить сухой газ практически невозможно. Поэтому в емкости орошения получаем сухой газ с содержанием пропана до 7 %, который подаем в качестве топлива в технологические печи установки и рефлюкс.

 

3.2.3. Вакуумный блок.

На практике существует два основных варианта получения широкой масляной фракции.

Тарельчатая ректификационная колонна.

Вакуумная колонна с высокоэффективной насадкой.

Рис. 3.3. Вакуумный блок.

 

За основу принимаем второй вариант, так как насадка является более эффективным контактным устройством и обладает малым гидравлическим сопротивлением. Из-за того, что получать базовые масла из вакуумных дистиллятов нецелесообразно, из колонны выводим два боковых погона и вакуумный газойль. Затемненный продукт используем для подогрева низа колонны в качестве «горячей струи». Теплоту вакуумных дистиллятов используем для подогрева сырой нефти.

Для получения остаточного давления в колонне 4-6 кПа, применяем вакуумсоздающую систему, которая состоит из трёх ступеней паровых эжекторов и поверхностных конденсаторов [18] (одна ступень обеспечивает остаточное давление около 13кПа, две – 7-8кПа).

Над вводом сырья и вводом верхнего циркуляционного орошения устанавливаем отбойные тарелки для предотвращения уноса капель жидкости.

 

Блок теплообменников

 

Схема теплообмена на установке должна обеспечивать подогрев нефти до температуры не менее 245 єС. Основой расчета схемы теплообмена является температура теплоносителей и их расход. В таблице 3.1 представлена характеристика теплоносителей, которые получаются на АВТ. Температура теплоносителей принята на основе литературных и практических данных по установкам АВТ на ОАО «Нафтан» и МНПЗ. Расходы – на основании материального баланса (п. 5)

 

Таблица 3.1. - Характеристика теплоносителей

Теплоноситель Расход, % масс. на нефть Начальная температура теплоносителя, °С
Теплоносители основной атмосферной колонны К-2
Верхнее циркуляционное орошение К-2 (ВЦО К-2) кратность 4    
Среднее циркуляционное орошение К-2 (СЦО К-2) в районе фракции 180-230оС кратность 3    
Фракция 180-230°С 5,9  
Фракция 230-360°С 16,13  
Нижнее циркуляционное орошение К-2 (НЦО К-2) кратность 2    
Теплоносители вакуумной колонны К-7
Верхнее циркуляционное орошение К-7 (ВЦО К-7) кратность 15    
Среднее циркуляционное орошение К-7 (СЦО К-7) кратность 2    
Нижнее циркуляционное орошение К-7 (НЦО К-7) кратность 1    
Фр. 360-450оС 12,5  
Фр. 450-550оС 10,55  
Гудрон (>530°С) 37,54  

 

Расчет схемы теплообмена до электродегидраторов:

 

1-й поток

Т-101:

∆t н=(150-50)∙5/50=10 єC

10+10=200С

 

Т-102:

∆t н=(125-70)∙21,5/50=24 єC

20+24=44 єC

 

Т-103:

∆t н=(145-120)∙18,0/50=9 єC

44+9=53 єC

 

Т-104:

∆t н=(155-100)∙12,5/50=14 єС

53+14=67 єС

 

Т-105:

∆t н=(230-170)∙37,54/50=51 єС

67+51=118 єС

 

2-ой поток

Т-201:

∆t н=(150-50)∙5/50=10 єC

10+10=200С

 

Т-202:

∆t н=(125-70)∙21,5/50=24 єC

20+24=44 єC

 

Т-203:

∆t н=(200-65)∙5,9/50=16 єC

44+16=60 єC

 

Т-204:

∆t н=(255-110)∙16,13/50=47 єС

60+47=107 єС

Потоки объединяем и с температурой 113,5 оС направляем в электродегидраторы.

 

И установки в целом

 

Все расчёты проводятся на основании таблиц приведённых в разделе 1.

В ТЕПЛООБМЕННИКЕ «НЕФТЬ-ДТ»

 

Произведём расчёт коэффициента теплопередачи теплообменника Т-204 с помощью программы “Ktepper”. Для этого на основании количества и свойств нефти и ДТ подготовим исходные данные для расчёта.

 

Расход теплоносителей:

Gн=357143∙0,5=178571,5 кг/ч — расход нефти, теплоноситель 1.

Gдт=357143∙0,1613=57607 кг/ч — расход ДТ через теплообменник по одному потоку, теплоноситель 2;

 

Средние температуры теплоносителей:

Физические свойства теплоносителей:

– относительные плотности нефти:

- относительные плотности ДТ:

определим кинематические вязкости:

и — для нефти, тогда можно составить систему уравнений из формулы и определить A и B.

отсюда .

и — для ДТ, тогда можно составить систему уравнений из формулы и определить A и B.

отсюда .

Принимаем кожухотрубчатый теплообменник в соответствии с ГОСТ 15122–79 [13]. Заносим необходимые данные в таблицу 9.1.

 

таблица 9.1 исходные данные для расчёта коэффициента теплопередачи

 

Наименование параметра размерность значение
средняя температура ДТ в трубном пространстве К 450,5
плотность ДТ в трубном пространстве при 288 К кг/м3 863,3
плотность ДТ в трубном пространстве при 450,5 К кг/м3 749,7
вязкость ДТ в трубном пространстве при 450,5 К м2/с 0,00000034
средняя температура нефти в межтрубном пространстве К 356,5
плотность нефти в межтрубном пространстве при 288 К кг/м3 892,8
плотность нефти в межтрубном пространстве при 356,5 К кг/м3 842,6
вязкость нефти в межтрубном пространстве при 356,5 К м2/с 0,00000615
внутренний диаметр труб м 0,021
Наружный диаметр труб м 0,025
толщину стенки труб м 0,002
количество труб на поток шт.  
площадь проходного сечения в вырезе перегородки м2 0,045
площадь проходного сечения между перегородками м2 0,040
коэффициент теплопроводности материала труб вт/м•к 17,5
расход ДТ в трубном пространстве кг/ч  
расход нефти в межтрубном пространстве кг/ч 178571,5

 

Результаты расчёта теплообменника по программе “Ktepper” представлены в таблице 9.2.

таблица 9.2 - Результаты расчёта теплообменника

 

Наименование параметра размерность значение
Скорость потока в трубном пространстве м/с 1,2
Скорость потока в межтрубном пространстве м/с 1,39
Коэффициент теплоотдачи в трубном пространстве Вт/м2•К  
Коэффициент теплоотдачи в межтрубном пространстве Вт/м2•К  
Коэффициент теплопередачи Вт/м2•К 57,3

 

----------------------------------------------------------------

Показатели! Пространство

!---------------------------------------

! Трубное! Межтрубное

----------------------------------------------------------------

Скорость потока,м/с! 1.208945751190186! 1.387560606002808

Коэф-т теплоотдачи,! 1964.802124023438! 64.82077026367188

Вт/м^2*К!

Коэф-т теплопередачи! 57.3052864074707

Вт/м^2*К!

----------------------------------------------------------------

ЗАКЛЮЧЕНИЕ

 

В результате выполнения данного курсового проекта была разработана схема установки АВТ мощностью 3 млн.т/г Девонской нефти. Приведёны расчёты: состава паровой и жидкой фаз в емкости орошения отбензинивающей колонны, колонны четкой ректификации бензина, тепловой нагрузки печи атмосферного блока, теплообменника, материального баланса установки. На данной установке получаем продукты согласно задания.

Список литературы

Хорошко С.И., Хорошко А.Н. Нефти северных регионов. Справочник. – Новополоцк, 2004. – 126 с.

Танатаров М.А., Ахметшина М.Н., Фасхутдинов Р.А. и др. Технологические расчёты установок переработки нефти. – М.: Химия, 1987. – 352 с.

Корж А.Ф., Хорошко С.И. Установка первичной переработки нефти. Методические указания к выполнению курсового проекта № 1 по курсу «Технология переработки нефти и газа» для студентов специальности Т.15.02. – Новополоцк, ПГУ: 2000.

Богомолов А.И., Гайле А.А., Громова В.В. и др. Химия нефти и газа. – СПб.: Химия, 1995.–448 с.

Альбом технологических схем процессов переработки нефти и газа./ под ред. Б.И. Бондаренко. –М.: Химия, 1983. – 128 с.

Рудин М. Г., Драбкин А. Е. Краткий справочник нефтепереработчика.– Л.: Химия, 1980. – 328 с.

Поникаров И.И., Перелыгин О.А., Доронин В.Н., Гайнулин М.Г. Машины и аппараты химических производств.– М.: Машиностроение, 1989.–368 с.

Гуревич И.Л. Технология переработки нефти и газа. Часть 1. – М.: Химия, 1972.–360 с.

Эмирджанов Р. Т., Лемберанский Р. А. Основы технологических расчётов в нефтепереработке и нефтехимии. – М.: Химия, 1989. – 192 с.

Сарданашвили А.Г., Львова А.И. Примеры и задачи по технологии переработки нефти и газа.– М.: Химия, 1980. – 256 с.

Кузнецов А.А., Кагерманов С.М., Судаков Е.Н. Расчёты процессов и аппаратов нефтеперерабатывающей промышленности. –Л., Химия, 1974. –334 с.

Основные процессы и аппараты химической технологии: Пособие по проектированию/ Под ред. Ю. И. Дытнерского. – М.: Химия, 1983. – 272 с.

[13] Левченко Д.Н. и др. Технология обессоливания нефтей на нефтеперерабатывающих предприятиях. – М.: Химия, 1985. – 186 с., ил.

[14] Абросимов А.А. Экологические аспекты производства и применения нефтепродуктов.– М.: ВАС, 1999.–731с.

[15] Хорошко С.И., Хорошко А.Н. Сборник задач по химии и технологии нефти и газа. – Мн.: Вышэйшая школа, 1989. – 122 с.

[16] Томин В.П., Корчевин Н.А. и др. Ингибитор коррозии для защиты оборудования. – ХТТМ, № 3: 2000.

[17] Эмирджанов Р.Т., Лемберанский Р.А. Основы технологических расчетов в нефтепереработке и нефтехимии. – М.: Химия, 1989. – 191с.

[18] Стандартные кожухотрубчатые теплообменные аппараты общего назначения. Каталог.-М.:ЦИНТИХИМНЕФТЕМАШ 1988.-39с.

[19] Основные процессы и аппараты химической технологии. Пособие по проектированию. Под ред. Ю.И. Дытнерского, М.: Химия,1991-496с

 

Установка первичной переработки нефти

Содержание:

 

Введение

1.Характеристика нефти по ГОСТ Р 51858-2002 и выбор варианта ее переработки

2.Характеристика получаемых фракций нефти и их возможное применения

3.Выбор и обоснование технологической схемы установки АВТ

4.Расчет количества и состава паровой и жидкой фаз в емкостии орошения отбензинивающей колонны (ЭВМ)

5.Расчет материального баланса ректификационных колонн и установки в целом

6.Расчет доли отгона сырья на входе в проектируемую колонну (ЭВМ)

7.Технологический расчет колонны

8.Расчет теплопроизводительности печи атмосферного блока

9.Расчет коэффициента теплопередачи в теплообменнике «нефть-ДТ» (ЭВМ)

10. Расчет площади поверхности нагрева теплообменника

11. Охрана окружающей среды на установке.

Заключение

Список литературы

ВВЕДЕНИЕ

 

Выпуск разнообразной продукции на нефтепереработки зависит во многом от качества сырья – нефти. Но немалую роль в качестве получаемых продуктов играет как выбор технологических процессов переработки, так и качество проведения каждого процесса.

Из сырой нефти непосредственно одним процессом нельзя получить ни один товарный нефтепродукт (за исключением газов), все они получаются последовательной обработкой на нескольких установках. Первой в этой цепочке всегда стоит установка ЭЛОУ-АВТ, поэтому от качества работы этой секции будет зависеть работа всех остальных звеньев технологической цепочки [1].

Установки первичной переработки нефти составляют основу всех НПЗ. На них вырабатываются практически все компоненты моторных топлив, смазочных масел, сырья для вторичных процессов и для нефтехимических производств. От работы АВТ зависят выход и качество компонентов топлив и смазочных масел и технико-экономический показатель последующих процессов переработки нефтяного сырья. Проблемам повышения эффективности работы и интенсификации установок АВТ всегда уделялось и уделяется серьезное внимание.

Важнейшими из всего многообразия проблем, стоящих перед современной нефтепереработкой нужно считать следующие:

- дальнейшее углубление переработки нефти;

повышение октановых чисел автобензинов;

снижение энергоемкости производств за счет внедрения новейших достижений в области тепло- и массообмена, разработки более совершенных и интенсивных технологий глубокой безотходной и экологически безвредной переработки нефти и др.

Решение этих проблем предусматривает:

Совершенствование основных аппаратов установок АВТ:

контактных устройств ректификационных колонн, от эффективности работы которых зависят материальные, энергетические и трудовые затраты, качество нефтепродуктов и глубина переработки нефти и т.д.;

конденсационно-вакуумсоздающих систем (КВС) промышленных вакуумных колонн;

трубчатых печей и теплообменно-холодильного оборудования.

Совершенствование технологических схем. При выборе технологической схемы и режима установки необходимо руководствоваться потенциальным содержанием фракций.

Совершенствование схем и технологии вакуумной и глубоковакуумной перегонки мазута, то есть

уменьшение уноса жидкости в концентрационную секцию колонны (установка отбойников из сетки и организация вывода затемненного тяжелого газойля);

подбор эффективных контактирующих устройств для углубления вакуума.

Преимущества насадочных контактных устройств перед тарельчатыми заключается, прежде всего, в исключительно малом перепаде давления на одну ступень разделения. Среди них более предпочтительными являются регулярные насадки, так как они имеют регулярную структуру (заданную), и их гидравлические и массообменные характеристики более стабильны по сравнению с насыпными [2]. Одним из подобных насадочных устройств является регулярная насадка «Кох-Глитч». Применение этой насадки в вакуумных колоннах позволило уменьшить наложение фракций, а также снизить расход водяного пара в куб колоны.

Коррозия оборудования – еще одна не менее важная проблема. Наличие в поступающей на переработку нефти хлоридов (как неорганических, так и органических) и соединений серы приводит вследствие их гидролиза и крекинга при прямой перегонки нефти к коррозии оборудования, главным образом конденсаторов и холодильников [1]. Имеющиеся ингибиторы коррозии не универсальны, поскольку у них есть ряд недостатков (неприятный запах, являются высокотоксичными соединениями и достаточно дорогими продуктами). Однако в настоящее время разработан новый ингибитор коррозии – водный раствор полигексаметиленгуанидингидрата (ПГМГ Ÿ Н2О). Этот ингибитор не имеет вышеперечисленных недостатков [3].

Одним из направлений совершенствования установок АВТ является улучшение отбора фракций от их потенциального содержания. С мазутом уходит до 5% дизельных фракций, а с гудроном – до 10% масляных фракций.

В практики фракционирования остатков атмосферной перегонки, наметилась тенденция к использованию вместо традиционных пароэжекторных вакуумных систем (ПЭВС) гидроциркуляционных (ГЦВС). Последние более сложные, но усложнение вакуум создающей системы и увеличение в связи с этим капитальных затрат оправдано явным преимуществом её эксплуатации.

В качестве рабочего тела в ГЦВЦ используется ДТ, получаемое на самой установке. Отказ от использования ПЭВС, а, следовательно, от использования в качестве рабочего тела водяного пара приводит к снижению на экологическую систему, за счёт сокращения сброса химически загрязненных вод.

Углубление вакуума, обеспечиваемое применением ГЦВЦ, даёт возможность снизить температуру потока питания вакуумной колонны при сохранении и даже увеличении доли отгона, т.е. уменьшить термическое разложение сырья в трубчатых печах [2].

Изложенный материал позволяет сделать вывод: установки АВТ еще далеки от универсальности. Однако их совершенствование приведет к решению не только перечисленных проблем, но и сыграет большую роль в защите окружающей среды.

1 Характеристика нефти по ГОСТ Р 51858-2002 и выбор варианта ее переработки

 

Выбор технологической схемы первичной и последующей переработки нефти в большой степени зависит от её качества. Данные о Девонской нефти взяты в справочной литературе [4]. Показатели качества нефти представлены в таблицах 1.1 и 1.2.

 

Таблица 1.1 – Показатели качества Девонской нефти

Показатели Единицы измерения Значение показателя
Плотность нефти при 20°С кг/м3 889,5
Содержание в нефти: хлористых солей   мг/дм3  
воды % масс. 0,67
серы % масс. 2,82
парафина % масс. 2,6
фракции до 360°С % масс. 38,4
фракции 360-500°С % масс. 18,7
фракции 500-600°С % масс. 15,0
Плотность гудрона (остатка) при 20 °С (фр.>500°С) кг/м3 1009,3
Вязкость нефти: при t=20°C   мм2/с   38,9
при t=50°C мм2/с 14,72
Выход суммы базовых масел с ИВі90 и температурой застывания Ј-15°С   % масс.   -

 

Таблица 1.2 – Потенциальное содержание фракций в Девонской нефти

Номер компонента Компоненты, фракции Массовая доля компонента в смеси, xi
  H2  
  CH4  
  C2H6 0,000278
  C2H4 0,00000
  H2S 0,00000
  SC3 0,003654
  SC4 0,006068
  28-62°С 0,018
  62-85°С 0,016
  85-105°С 0,019
  105-140°С 0,036
  140-180°С 0,046
  180-210°С 0,039
  210-310°С 0,138
  310-360°С 0,072
  360-400°С 0,061
  400-450°С 0,064
  450-500°С 0,062
  500-550°С 0,081
  >550°С 0,338
  Итого: 1,000

 

Показатели качества Девонской нефти, приведенные в таблицах 1.1 и 1.2, позволяют сказать, что базовых масел с ИВі90 и температурой застывания Ј-15°С в нефти нет.

Таким образом производство базовых масел, т.е. получение узких масляных фракций на установке АВТ является не целесообразным.

Нефть следует перерабатывать по топливному варианту.

Девонская нефть с массовой долей серы 2,82 % (класс 3, высокосернистая), плотностью при 20оС 889,5 (тип 3, тяжелая), концентрации хлористых солей 119 мг/дм3, массовой долей воды 0,67 % (группа 3), массовой долей сероводорода 24 ррm (вид 2) обозначается «3.3.3.2. ГОСТ Р 51858-2002». Данная нефть соответствует «ГОСТ Р 51858-2002.Нефть. Общие технические условия.» только для внутреннего использования (плотность не соответствует требованиям экспортного варианта - тип 3).

 

2 Характеристика фракций нефти и вариантов их применения

 

Характеристики всех фракций нефти составлена по данным справочника [4] и приводятся в виде таблиц.

 

2.1 Характеристика газов

 

Таблица 2.1 – Состав и выход газов на нефть

Компоненты Выход на нефть, % масс.
Метан  
Этан 1,0∙0,0278=0,0278
Пропан 1,0∙0,3654=0,3654
Бутан 1,0∙0,4546=0,4546
Изобутан 1,0∙0,1522=0,1522
Итого: 1,0

 

Содержание этана в рефлюксе: 2,78 % масс..

Девонской нефть содержит в основном тяжёлые газы, т.е. пропан и бутаны. Поэтому смесь этих газов можно получать в жидком состоянии в ёмкости орошения стабилизационной колонны в виде рефлюкса и использовать его как товарный сжиженный газ, т.к. содержание этана в нём будет <5 %).

 

2.2 Характеристика бензиновых фракций и их применение

 

Таблица 2.2 – Характеристика бензиновых фракций Девонской нефти

 

Пределы кипения фракции, °С Выход на нефть, % масс. Октановое число без ТЭС Содержание, % масс.
      серы ароматических углеводородов нафтеновых углеводородов парафиновых углеводородов
н.к.-70 2,1   0,1      
70-120 4,5   0,18      
70-140 6,8   0,20      
140-180 4,6   0,32      
н.к.-180 13,5   0,19      

 

В таблице 2.2 представлены характеристики всех бензиновых фракций, которые получают на современных установках АВТ. В настоящее время при первичной перегонке нефти не выделяют узкие бензиновые фракции, служившие ранее сырьем для производства индивидуальных ароматических углеводородов в процессе каталитического риформинга. На современных установках каталитического риформинга применяются высокоактивные катализаторы при пониженном давлении в реакторах, что обеспечивает высокий выход ароматики (55-65 % на катализат) при работе на сырье широкого фракционного состава, выкипающем в пределах 70-180°С. На установке АВТ в основном получают бензиновые фракции 70-120°С (при выработке реактивного топлива) или 70-180°С (если реактивное топливо не вырабатывают), которые направляют на риформинг для повышения их октанового числа. Фракцию нк-70°С целесообразно использовать для процесса изомеризации и далее как компонент бензина. Фракцию 70-140°С для получения ароматики на установке каталитического риформинга или в смеси с фракцией 140-180°С, для производства высокооктанового компонента автомобильных бензинов. Для всех фракций необходима предварительная гидроочистка.

2.3 Характеристика дизельных фракций и их применение

 

В таблице 2.3 представлена характеристика дизельных фракций, которые можно вырабатывать на установке АВТ из любой нефти и, в частности, из Девонской. Однако получение на АВТ той или иной дизельной фракции должно быть обоснованным.

Таблица 2.3 – Характеристика дизельных фракций Девонской нефти

Пределы кипения, °С Выход на нефть, % масс. Цетано-вое число Вязкость при 20°С, мм2/с (сСт) Температура Содержание серы общей, % масс.
        помутнения, °С застывания, °С  
180-230 5,9 - - - минус 50 0,78
230-360 19,0   8,21 минус 4 минус 8 1,98
180-360 24,9   6,34 минус 5 минус 10 1,80

 

Из Девонской нефти получаем дизельные фракции 180-230°С и 230-360°С. Фракция 180-360°С отвечает требованиям стандарта на летнее дизельное топливо. Фракцию 180-230°С можем использовать как компонент зимнего ДТ. Для всех продуктов требуется гидроочистка для понижения содержания серы [4].

 

2.4 Характеристика вакуумных (масляных) дистиллятов Девонской нефти и их применение

 

Таблица 2.4 – Характеристика вакуумных дистиллятов Девонской нефти

Пределы кипения, °С Выход на нефть, % масс. Плотность при 20°С, кг/м3 Вязкость, мм2/с, при Выход базовых масел с ИВі90 на дистиллят, % масс.
      50°С 100°С  
350-430 11,19 872,3 13,91 4,82 -
430-510 10,13 886,0 45,68 8,17 -
510-600 13,71 924,5 167,49 24,56 -
выше 600 26,9 947,2 298,23 33,45 -

 

Данные табл. 2.4 показывают нецелесообразность получения узких масляных фракций из Девонской нефти, т.к. получение базовых масел с ИВ≥90 невозможно из-за их отсутствия. Поэтому после выхода из вакуумной колонны и блока теплообменников потоки объединяем и направляем широкую масляную фракцию (ШМФ) на установки каталитического крекинга и (или) гидрокрекинга.

 

2.5 Характеристика остатков и их применение

 

Таблица 2.5 – Характеристика остатков Девонской нефти

Показатель Остатки, tнк °С
  выше 350 выше 500 выше 600
Выход на нефть, % масс. 62,0 41,9 26,9
Вязкость условная, °ВУ: при 80°С   18,84   379,00   -
при 100°С 9,63 224,28 357,80
Плотность при 20°С, кг/м3 975,2 1009,3 1163,4
Коксуемость, % масс. 11,06 14,51 17,40
Содержание, % масс.: серы   3,18   3,57   4,19
парафинов 2,1 0,6 0,4

 

На установке АВТ получают остатки: остаток атмосферной перегонки – мазут (tнк~360°С) и остаток вакуумной перегонки – гудрон обычный (tнк~550°С). Мазут поступает на вакуумный блок для производства масляных дистиллятов.

Мазут и гудрон применяются в качестве компонентов котельных топлив и сырья для установок висбрекинга и коксования. Кроме того, гудрон используется в качестве сырья для процесса деасфальтизации и производства битумов, т.к. Девонская нефть отвечает требованиям:

А+С-2,5П=6,15+17,84-2,5·0,5=22,74 > 0,

где А, С, П – содержание асфальтенов, смол и парафинов в нефти соответственно [4].

Остатки Девонской нефти из-за повышенной вязкости (ВУ > 16) могут быть применены в качестве компонентов котельных топлив только после их переработки на установке висбрекинга.



Поделиться:


Последнее изменение этой страницы: 2016-04-23; просмотров: 964; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.223.30 (0.012 с.)