Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
ТЕМА. Коагуляція колоїдних розчинів.Содержание книги
Поиск на нашем сайте
2. ОБГРУНТУВАННЯ ТЕМИ. Усі біологічні рідини організму: кров, внутрішньоклітинна рідина, лімфа, сеча, спинномозкова рідина та ін. – є складними дисперсними системами. Для них дуже важливими факторами є сталість електролітного та білкового складу, рН. Зміна цих параметрів може призвести до початку коагуляційних процесів колоїдних фаз, зсідання еритроцитів та білків. Незначна зміна якісного складу електролітів в організмі може викликати коагуляцію колоїдних компонентів, тому що різні за зарядом йони мають різний поріг коагуляції. Коагуляційні процеси відбуваються і при зсіданні крові – комплексі ферментативних реакцій, що, з одного боку, забезпечують мінімальну втрату крові, а з другого – викликають утворення тромбів у кровоносних судинах. У багатьох випадках у клінічних лабораторіях виконують комплекс аналізів по дослідженню зсідання крові (коагуляційного гемостазу), а до складу загального клінічного аналізу крові входить ШОЕ (швидкість осідання еритроцитів). Майбутній лікар, безумовно, повинен уявляти, наскільки важливими є коагуляційні процеси для життєдіяльності організму, зберігання та консервації крові, застосування сучасних тромборезистентних матеріалів. 3. МЕТА. Сформувати уявлення про стійкість колоїдних систем, механізм коагуляції та фактори, що її викликають. Усвідомити важливість коагуляційних процесів для життєдіяльності організму та медичної практики. Студент повинен знати: - фактори стійкості колоїдних систем; - причини та механізм коагуляції колоїдів; - особливості коагуляції золей електролітами, правило Шульце-Гарді; - роль коагуляції у біологічних системах; - супутні коагуляційні процеси (чергування зон коагуляції, звикання золей, взаємна коагуляція); вміти: - розраховувати поріг коагуляції електролітів; - оцінювати коагуляційну здатність електролітів за правилом Шульце-Гарді; оволодіти навичками: - проведення коагуляції колоїдних систем електролітами. ОСНОВНІ БАЗОВІ ЗНАННЯ, ВМІННЯ І НАВИЧКИ, НЕОБХІДНІ ДЛЯ ЗАСВОЄННЯ ТЕМИ. 1) Характеристика йонів (заряд, радіус, гідратна оболонка). (Матеріал шкільної програми з хімії). 2) Будова міцели золя. 3) Поверхнева енергія межі поділу фаз у гетерогенній системі. (Матеріал попередніх занять). ГРАФ ЛОГІЧНОЇ СТРУКТУРИ. Стійкість колоїдних систем Коагуляція і фактори, що її викликають Теорія і механізм Коагуляція Коагуляція в біологічних коагуляції електролітами системах Супутні Правило Коагуляція коагуляційні Шульце-Гарді сумішами процеси електролітів
Визначення порогів коагуляції золю електролітами ОРІЄНТОВНА КАРТКА ДЛЯ САМОПІДГОТОВКИ ДО ЗАНЯТТЯ (самостійна позааудиторна робота студентів).
ПИТАННЯ ДЛЯ САМОСТІЙНОГО ОПРАЦЮВАННЯ (самостійна позааудиторна робота студентів).
1) Вказати фактори, що зумовлюють стійкість колоїдних розчинів: 1 – знак заряду частинки; 2 – величина заряду частинки; 3 – товщина дифузного шару; 4 – вид йонів у дифузному шарі; 5 – броунівський рух колоїдних частинок; 6 - величина електрокінетичного потенціалу.
а) 1, 2, 3, 6; б) 2, 3, 5, 6; в) 1, 2, 4, 5; г) 1, 3, 4, 5.
2) Вибрати фактори, що викликають коагуляцію золю: 1 – зміна температури; 2 – додавання розчинника; 3 – зміна тиску; 4 – додавання електроліту; 5 – додавання водовіднімаючих засобів.
а) 1, 2, 3; б) 1, 3, 4; в) 1, 4, 5; г) 2, 3, 5.
3) Вибрати фактори, від яких залежить поріг коагуляції та коагулююча здатність йонів:
а) концентрація йона; б) ступінь гідратації йона; в) заряд йона; г) температура.
4) Вибрати електроліт, для якого поріг коагуляції золю з від¢ємним зарядом частинок буде мінімальним:
а) Na2CO3; б) K3PO4; в) CaCl2; г) Al(NO3)3.
5) Вказати, до якого електрода будуть рухатися частинки золю при електрофорезі, якщо при дослідженні коагуляції цього золю одержані такі значення порогів коагуляції для електролітів (ммоль/дм3): K3PO4 – 0,02; MgSO4 – 1,50; FeCl3 – 201,3.
а) до катода; б) частинки не рухаються; в) до анода; г) визначити неможливо.
6) Вибрати правильну характеристику явища антагонізму йонів при коагуляції:
а) неможливість йонів існувати одночасно в одному розчині внаслідок реакції між ними; б) зниження розчинності йонів при спільній присутності в розчині; в) зниження порогів коагуляції йонів при спільній коагуляції; г) зниження коагулюючої здатності йонів при спільній коагуляції.
ПРАВИЛЬНІ ВІДПОВІДІ. 1) Правильна відповідь б). Стійкість колоїдних розчинів обумовлюють фактори агрегативної стійкості: величина заряду, товщина дифузного шару (гідратної оболонки), величина дзета-потенціалу, і фактор кінетичної стійкості – броунівський рух частинок. Від знаку заряду частинки і природи йонів дифузного шару стійкість колоїдних розчинів не залежить.
2) Правильна відповідь в). Зміна температури, додавання електроліту та водовіднімаючих засобів, а також сильні механічні втручання можуть змінити величини факторів стійкості колоїдних систем, сприяти коагуляції. Зміна тиску майже не впливає на стан рідких систем, а додавання розчинника, у переважній більшості випадків, підвищує стабільність колоїдних систем, тому що при цьому зменшується концентрація дисперсної фази.
3) Правильні відповіді б) і в). Поріг коагуляції визначається кількістю еквівалентів електроліту, яка викликає коагуляцію 1 л золю (ммоль/л), а коагулююча здатність є величиною, оберненою порогу коагуляції. Отже, обидва показники не залежать від концентрації йонів у розчині, тому що при коагуляції буде змінюватися об¢єм цього розчину. Сила йона, як коагулянта, визначається зарядом йона та ступенем гідратації (радіусом гідратованого йона). Причому, чим більший заряд і менший ступінь гідратації (радіус гідратованого йона), тим менший поріг коагуляції і більша коагулююча здатність йона. Температура однаковою мірою впливає на коагуляційну здатність всіх йонів, тобто на коагуляцію в цілому.
4) Правильна відповідь г). Оскільки частинки золю мають від¢ємний заряд, коагуляцію цього золю викликатимуть катіони. Згідно з правилом Шульце-Гарді, найменше значення порогу коагуляції матиме катіон з максимальним зарядом, тобто катіон алюмінію. Отже, для нітрату алюмінію поріг коагуляції буде найменшим.
5) Правильна відповідь а). Зробимо припущення, що коагуляцію викликають катіони, тоді максимальний поріг коагуляції мав би фосфат калію (заряд катіона +1), а мінімальний поріг коагуляції – хлорид феруму (ІІІ) (заряд катіона +3). Це припущення не відповідає одержаним даним і повинне бути відкинуте. Проаналізуємо припущення, що коагуляцію викликають аніони, тоді фосфат калію (заряд аніона –3) повинен мати найменше значення порогу коагуляції, а хлорид феруму (ІІІ) (заряд аніона –1) – найбільше. Це припущення підтверджується результатами дослідження. Отже, коагуляцію золю викликають аніони, а заряд частинок золю позитивний. При електрофорезі ці частинки рухатимуться до катода (негативно зарядженого електрода).
6) Правильна відповідь г). Явище антагонізму йонів при коагуляції проявляється в тому, що при спільній коагуляції цих йонів поріг коагуляції йона буде більшим, ніж при індивідуальній дії, а, відповідно, коагулююча здатність – меншою. Однозначного теоретичного обгрунтування такого явища немає.
ВКАЗІВКИ ДО РОБОТИ СТУДЕНТІВ НА ЗАНЯТТІ. 8.1. Приготування розведених розчинів електролітів. Підготувати три серії пробірок по 5 штук у кожній, у яких буде досліджуватися коагулююча дія електролітів: І серія – розчин з молярною концентрацією еквівалента КСl 2,0 моль/л; ІІ серія – розчин з молярною концентрацією еквівалента К2СrO4 0,1 моль/л; ІІІ серія – розчин з молярною концентрацією еквівалента К4[Fe(CN)6] 0,01 моль/л. Приготувати розведені розчини електролітів. Для цього налити у першу пробірку 10 см3 розчину електроліту, а у чотири інші пробірки серії – по 9 см3 дистильованої води. Перенести 1 см3 розчину з першої пробірки у другу, після перемішування з другої пробірки 1 см3 розчину перенести у третю, з третьої – у четверту, потім з четвертої – у п¢яту. З останньої пробірки, після перемішування, 1 см3 розчину вилити геть. Таким чином, одержані п¢ять розчинів електроліту, концентрація яких поступово зменшується у 10 разів.
8.2. Проведення коагуляції. Додати до всїх розчинів електролітів по 1,0 см3 золю гідроксиду феруму (ІІІ), перемішати. Через 5-10 хвилин відмітити пробірки, в яких відбулася коагуляція – розчини стали каламутними, або утворився осад. Визначити найменшу концентрацію розчину електроліту, що викликала коагуляцію.
8.3. Розрахунок порогу коагуляції електроліту. Визначити величину порогу коагуляції для кожного електроліту за формулою: Спор. = , ммоль/л; де: Спор . –поріг коагуляції, ммоль/л; V - об¢єм розчину електроліту, см3; Сmin - мінімальна молярна концентрація еквівалента електроліту, моль/дм3; V з - об¢єм золю, см3.
8.4. Визначення залежності між величиною порогу коагуляції та зарядом йона. Результати дослідження та розрахунків занести у таблицю.
Зробити висновок про вид коагулюючого йона (аніон чи катіон) та про залежність величини порогу коагуляції від заряду йона, що викликає коагуляцію.
8.5. Оформлення протоколу лабораторної роботи. Записати у зошит необхідні розрахунки, заповнити таблицю та записати висновок про вид коагулюючого йона (аніон чи катіон) та про залежність величини порогу коагуляції від заряду йона, що викликає коагуляцію.
ЛІТЕРАТУРА.
1. Мороз А.С., Луцевич Д.Д., Яворська Л.П. Медична хімія. –В: НОВА КНИГА, 2006, с. 641-671. 2. Медицинская химия: учеб. / В.А. Калибабчук, Л.И. Грищенко, В.И. Галинская и др.; под ред. В.А. Калибабчук. – К.: Медицина, 2008. 3. Садовничая Л.П., Хухрянский В.Г., Цыганенко А.Я. Биофизическая химия. -Київ: Вища школа, 1986.-С.222-233. 4. Равич-Щербо М.И., Новиков В.В. Физическая и коллоидная химия. -М.: Высшая школа, 1975. –С. 132-152, 175-179.
ЗАНЯТТЯ № 10 ТЕМА. Колоїдний захист.
2. ОБГРУНТУВАННЯ ТЕМИ. Явище колоїдного захисту має велике значення для нормального функціонування живого організму. Білки, полісахариди, деякі інші природні полімери адсорбуються на поверхні колоїдних гідрофобних частинок, збільшують їх гідрофільність і підвищують стабільність, захищаючи від коагулюючої дії електролітів. Частинки жиру, холестерину, нерозчинних фосфатів, уратів, оксалатів кальцію знаходяться у рідинах організму в такому “захищеному” стані. Захисна дія білків сприяє підвищенню концентрації нерозчинних речовин: протеїни сироватки крові збільшують “розчинність” карбонату кальцію майже в п¢ять разів, високий вміст в молоці фосфату кальцію також пов¢язаний з захисною дією білків. Деякі патологічні процеси, старіння організму змінюють концентрацію та захисні властивості білків, полісахаридів, що призводить до утворення холестериновик бляшок на стінках судин, каменів у нирках, сечовому та жовчному міхурах. Явище колоїдного захисту використовується при виготовленні лікарських засобів. У медицині широко застосовують золі срібла (коларгол, протаргол, лізергін), золота, ртуті, радіоактивних ізотопів, захищених альбуміном, казеїном, желатиною, декстрином, пектинами. 3. МЕТА. Сформувати уявлення про механізм захисної дії природних високомолекулярних сполук, біологічну роль та застосування колоїдного захисту. Студент повинен знати: - суть явища колоїдного захисту; - механізм захисної дії високомолекулярних сполук (ВМС); - біологічну роль колоїдного захисту та його застосування у медицині; вміти: - розраховувати захисне число природного полімера; оволодіти навичками; - дослідження явища колоїдного захисту; - визначення захисного числа желатини.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-09-13; просмотров: 1206; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.211.58 (0.007 с.) |