Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Абсолютно упругий удар шаровСодержание книги
Поиск на нашем сайте
Рассмотрим абсолютно упругий удар шаров, при котором происходит упругая деформация шаров, не возникает тепла и пластической деформации (рис.8.3). Даны массы шаров и их скорости до удара , . В результате такого взаимодействия вся кинетическая энергия до удара превращается в кинетическую энергию системы (шаров) после удара. В результате после удара шары будут двигаться с некоторыми скоростями u1 и u2. Пусть . Шары взаимодействуют только между собой, т.е. система замкнута, между телами действуют только консервативные силы. В такой ситуации должны выполняться законы сохранения импульса и механической энергии. Запишем эти законы применительно к данному случаю, причем закон сохранения импульса представим в алгебраической форме: . (8.46) Перепишем эти формулы следующим образом: ; (8.47) . (8.48) Разделим (8.48) на (8.47) почленно: . (8.49) Теперь имеем систему линейных уравнений (8.47) и (8.49). Для нахождения скоростей шаров после взаимодействия , выразим из (8.49) и подставим в (8.47): , . Откуда . (8.50) В системе уравнений (8.46) ничего не изменится, если заменить индекс 1 на индекс 2, поэтому для получения формулы, выражающей , достаточно в формуле (8.50) заменить индекс 1 на индекс 2: . (8.51) В общем случае ; (8.52) . (8.53) Знак (+) соответствует случаю, когда первый шар нагоняет второй, а знак (-) - когда шары движутся навстречу друг другу. Из уравнения (8.53) видно, что: 1) если m1 = m2 = m, то u1 = v2, а u2 = v1, т.е. в этом случае шары обмениваются скоростями; 2) при ударе шара о стенку (m2>>m1): а) u2 = v2 - скорость стенки остается неизменной; б) u1 = 2v2 – v1 - при этом, если стенка неподвижна (v2 = 0), скорость шара после удара, оставаясь неизменной по величине, изменяет свое направление на противоположное. При v2 = 0 u1 возрастает до 2v2 при движении стенки навстречу шару и убывает до 2v2, если стенка удаляется от него. Лекция 9. Основы релятивистской механики. Принцип относительности Галилея. Преобразования Галилея. Инварианты преобразования. Закон сложения скоростей в классической механике. Представления о свойствах пространства и времени в специальной теории относительности. Постулаты специальной теории относительности. Преобразования Лоренца для координат и времени. Следствия из преобразований Лоренца: сокращение движущихся масштабов длин, замедление движущихся часов, закон сложения скоростей. 9.1. Принцип относительности Галилея. Теория относительности, физическая теория, рассматривающая пространственно-временные закономерности, справедливые для любых физических процессов. Универсальность пространственно-временных свойств, рассматриваемых теорией относительности, позволяет говорить о них просто как о свойствах пространства-времени. Наиболее общая теория пространства-времени называется общей теорией относительности (ОТО) или теорией тяготения, так как согласно этой теории свойства пространства-времени в данной области определяются действующими в ней полями тяготения. В специальной (частной) теории относительности (СТО), основы которой были опубликованы А. Эйнштейном в 1905 г., изучаются свойства пространства-времени, справедливые с той точностью, с какой можно пренебрегать действием тяготения. Таким образом, логически СТО - частный случай ОТО; исторически построение ОТО А. Эйнштейном было завершено в 1915 году, после чего и появился термин "частная (специальная) теория относительности". Надо отметить, что еще до появления СТО голландский и французский физики Лоренц и Пуанкаре были близки к получению результатов, вытекающих из положений СТО. А. Эйнштейн представил с единой точки зрения все известные до него эксперименты по определению скорости света и зависимости скорости распространения света от того, движутся или нет источники и приемники света, изложил физическое понимание проблем, с которыми столкнулись электродинамика и оптика. Рассматривая движение материальных точек (тел) в классической механике, предполагается, что они движутся со скоростями v<<c (v - скорость движущегося объекта; c - скорость распространения света в вакууме). Говоря о механическом движении, т.е. о перемещении тела в пространстве, всегда имеется в виду его движение относительно других тел (или одних частей тела относительно других его частей). Для математического описания движения тел с этим телом и другими телами жестко связывается система отсчета и часы для определения времени. Положение материальной точки (тела) в выбранной системе отсчета определяется либо с помощью координат (X,У,Z), либо с помощью радиус-вектора r и часов. При движении материальной точки (тела) в инерциальной системе отсчета предполагается: 1) выбранная система отсчета неподвижна или движется равномерно и прямолинейно относительно любой другой инерциальной системы отсчета; 2) условия движения тела в различных системах отсчета одинаковы; 3) основное уравнение динамики F = d p /dt = m a (второй закон Ньютона) справедливо, если наблюдатель неподвижен относительно выбранной системы отсчета. В этом случае: 1) тело, брошенное вдоль вагона, достигает противоположной стенки за одно и то же время, независимо от того движется ли оно по направлению движения поезда или в противоположном направлении, причем это время такое же, как и в покоящемся вагоне; 2) тело, брошенное вертикально вверх в вагоне, движущимся равномерно и прямолинейно (движущейся системе отсчета), вернется в ту же точку вагона, из которой оно было брошено, а не отклонится в сторону, противоположную направлению движения вагона; 3) упругий удар биллиардных шаров в обеих инерциальных системах (покоящейся и движущейся) отсчета заканчивается разлетом на одинаковые углы и с одинаковыми скоростями, если только в двух системах отсчета были одинаковые начальные скорости и направления движения. Все это показывает, что в классической механике справедлив следующий закон природы: "В двух системах отсчета, движущихся друг относительно друга равномерно и прямолинейно, все механические явления протекают одинаково (при одинаковых условиях)". Это положение, сформулированное еще Галилеем, получило название классического принципа относительности, или принципа относительности Галилея. Если начальные условия в различных системах отсчета не одинаковы, то величины, характеризующие движение (координаты, скорости, траектория движения), относительны. Например, траектория движения тела, свободно падающего вертикально вниз в неподвижной системе отсчета, представляет собой прямую линию. Однако по отношению к движущейся системе отсчета это же тело движется по параболе. Наблюдая движение тел внутри инерциальных систем отсчета, нельзя установить, какая из них движется, а какая покоится. Это позволяет придать принципу относительности Галилея другую (отрицательную) формулировку: "Никакие опыты, проводимые в инерциальных системах отсчета с механическими приборами (представляющими собой совокупность пружин, нитей, блоков, рычагов и т. д.), не позволяют установить, покоится система отсчета или движется равномерно и прямолинейно по отношению к другой инерциальной системе отсчета.
Согласно механическому принципу относительности, во всех инерциальных системах отсчета законы классической механики имеют одинаковую форму. Рассмотрим две инерциальные системы отсчета: систему К, которую будем считать условно неподвижной, и систему К', движущуюся относительно К равномерно и прямолинейно со скоростью v0 (v0 = const). Отсчет времени начнем с момента, когда начала координат обеих систем совпадали. В классической механике предполагается, что время не зависит от относительного движения систем отсчета (рис.9.1). Положение произвольной точки в этих системах можно определить радиус-векторами r и r '; положение начала координат системы К' в системе К - радиус-вектором r o. Если направление скорости v 0 совпадает с направлением r o, то в произвольный момент времени t, положение выбранной точки в системе К можно определить так: r = r '+ r 0= r '+ v ot; t = t'. (9.1) В проекциях на оси координат выражение (9.1) будет иметь следующий вид: x = x' + v0xt, у = у' + v0уt, z = z' + v0zt, t = t'. (9.2) Соотношения (9.2) называют обратными преобразованиями координат Галилея. Для получения прямых преобразований Галилея необходимо поменять знак относительной скорости v0. В результате получим x' = x - v0xt, у' = у - v0уt, z' = z - v0zt, t = t'. (9.3) Или в векторной форме r' = r -v0t; t = t'. (9.4) Уравнения, обе части которых при переходе от одной системы координат к другой преобразуются одинаково и благодаря этому сохраняют свой вид во всех координатных (инерциальных) системах, называются ковариантными или инвариантными по отношению к рассматриваемому преобразованию координатных систем. Поэтому уравнения, выражающие физические законы в векторной форме, не зависят от выбора осей координат, они инвариантны. Продифференцировав (9.1) по времени, получим v = v' + v0. (9.5) Уравнение (9.5) является математической формой записи закона сложения скоростей в классической механике. Из выражения (9.5) ; a = a '. (9.6) Таким образом, ускорение выбранной точки в инерциальных системах отсчета К и К', движущихся относительно друг друга равномерно и прямолинейно, одинаково. Следовательно, если на рассматриваемую точку не действуют внешние силы, то согласно (9.6) система К' является инерциальной (выбранная точка движется относительно нее равномерно и прямолинейно). Умножив (9.6) на массу материальной точки, будем иметь m a = m a ', (9.7) или m a = F; m a ' = F '. (9.8) Уравнения (9.8) выражают основной закон классической динамики. Равенство F = F ' означает, что законы классической динамики инвариантны при переходе от одной инерциальной системы к другой, что в свою очередь подтверждает справедливость принципа относительности Галилея. В классической механике предполагается, что время во всех инерциальных системах отсчета одно и то же (это можно доказать), а координаты выбранной материальной точки (тела) относительны. Относительные расстояния между двумя точками пространства определяются из геометрических соображений. При этом относительное расстояние между выбранными точками пространства в подвижной системе отсчета определяется соотношением , (9.9) а в неподвижной системе отсчета . (9.10) Сравнив (9.9) и (9.10), можно сделать вывод, что относительные расстояния в классической механике одинаковы во всех инерциальных системах отсчета, они абсолютны, т.е. инвариантны. Таким образом, принцип относительности по своему содержанию глубоко диалектичен. Он утверждает относительность ряда величин и понятий (координаты, скорости, траектории), содержит утверждение об абсолютности (инвариантности) расстояния между телами (точками), промежутков времени между событиями, относительных скоростей тел, ускорений, об инвариантности (абсолютности) законов природы. С этой точки зрения, само название "принцип относительности" не является наиболее удачным, так как оно подчеркивает только одну, причем не самую важную сторону - относительность, и игнорирует другую - абсолютность (инвариантность) законов механики. Следовательно, можно привести математическую формулировку принципа относительности Галилея: уравнения второго закона Ньютона инвариантны относительно преобразований Галилея. Инвариантные величины (расстояния между телами (точками), промежутки времени между событиями, относительные скорости тел, ускорения) называют инвариантами преобразований. 9.2. Постулаты и представления о свойствах пространства Из механического принципа относительности Галилея следует, что скорость движения механических объектов (тел, материальных точек) относительна и зависит от того, в какой инерциальной системе отсчета происходит движение. Следовательно, скорость распространения света зависит от того, движется ли приемник или источник света или нет. Максвелл в 1878 г. предложил мысленный эксперимент по определению зависимости скорости распространения света от того, движется ли источник света или покоится. Представим вагон длиной 2l, движущийся равномерно и прямолинейно со скоростью v. В середине вагона включается лампочка S и световые лучи освещают стенки вагона. С точки зрения наблюдателя, находящегося в вагоне, лучи света достигнут передней и задней его стенки одновременно. С точки зрения наблюдателя, находящегося вне вагона, свет достигнет передней стенки вагона позже, чем задней, так как передняя стенка "убегает" от световых лучей, а задняя "догоняет" их. Это связано с тем, что если скорость света вне вагона "c" то скорость света по отношению передней стенке (c - v), а по отношению к задней стенке - (c + v). Поэтому свет должен прийти к рассматриваемым стенкам вагона в разные моменты времени. Запаздывание одного луча по сравнению с другим будет составлять . (9.11) Учитывая, что v<<c, получим , (9.12) откуда . (9.13) Таким образом, зная длину вагона, скорость света, измерив, разность времен Dt, можно не только установить факт движения инерциальной системы отсчета, связанной с вагоном по отношению к неподвижной системе отсчета, но и найти скорость этого движения. Эту скорость естественно было бы назвать абсолютной в отличие от множества относительных скоростей по отношению к произвольно движущимся инерциальным (галилеевым) системам отсчета. Непосредственное осуществление такого эксперимента затруднительно из-за ничтожно малой разности времен Dt. Однако такие малые разности во времени распространения света можно определить с помощью интерференционных приборов. Это связано с тем, что даже малые разности промежутков времени приводят к значительным изменениям оптической разности хода двух световых лучей: c×Dt. Определив разность хода двух лучей, рассчитав разность времен Dt, можно определить скорость v, а следовательно, и обнаружить движение одной инерциальной системы отсчета относительно другой. Многочисленные опыты (эксперименты), поставленные в разное время Майкельсоном и Морли, Томашеком, убедительно показали, что скорость света не зависит от движения источника света. Таким образом, обнаружить движение инерциальных систем отсчета относительно друг друга оказалось невозможным. В отличие от всех исследователей А. Эйнштейн усмотрел в отрицательном результате опытов Майкельсона не случайную трудность, которая нуждается в том или ином (столь же случайном) объяснении, а проявление некоторого общего закона природы: "Невозможно обнаружить прямолинейное и равномерное движение инерциальных систем отсчета по отношению к другим (к абсолютному пространству) не только механическими, но и оптическими методами". Обобщая этот результат, он выдвигает гипотезу, которая является расширением принципа относительности Галилея и носит название принципа относительности Эйнштейна (или первого постулата теории относительности): «Никакие физические опыты (механические, оптические, тепловые, электромагнитные и т.д.), производимые внутри инерциальной системы отсчета, не позволяют установить, находится ли она в равномерном абсолютном и прямолинейном движении или нет». Так же, как и принцип Галилея, принцип относительности Эйнштейна допускает и утвердительную формулировку: «Все физические явления протекают одинаково (при одинаковых условиях) в двух инерциальных системах отсчета, движущихся друг относительно друга равномерно и прямолинейно». В силу этого любая идея создания физического прибора (механического, оптического и т.п.), обнаруживающего абсолютное движение инерциальных систем отсчета, должна быть отвергнута, как и идея создания любого вечного двигателя. Принцип относительности делает совершенно надуманной и беспредметной гипотезу абсолютного пространства. Если во всех инерциальных системах, движущихся друг относительно друга равномерно и прямолинейно, все физические явления протекают одинаково. Следовательно, любую из них с одинаковым правом можно считать покоящейся абсолютно. Одновременно оказываются несостоятельными понятия абсолютного покоя и абсолютного движения. Всякое движение относительно и имеет смысл говорить лишь о движении одних тел по отношению к другим телам. Теория относительности, в основе которой лежит только принцип относительности, не может представлять физическую теорию, предсказывающую огромное количество новых фактов и имеющую колоссальное поле деятельности в современной атомной и ядерной физике. Принцип относительности представляет физическую теорию при дополнении его вторым постулатом (принципом Эйнштейна) - принципом независимости и постоянства скорости света: «Скорость света в вакууме одинакова во всех направлениях и не зависит от движения источника света». Принцип постоянства и независимости скорости распространения света подтверждается экспериментально (наблюдения за двойными звездами, опыт Томашека). С точки зрения классической физики, первый и второй постулаты теории относительности противоречат друг другу. Для устранения противоречия А. Эйнштейн предложил третий постулат - принцип одновременности событий: «События, одновременные в одной системе отсчета, не являются одновременными в другой системе отсчета, то есть одновременность является понятием относительным». Для доказательства этого постулата воспользуемся двумя инерциальными системами отсчета: неподвижной системой (К) и системой (К'), которая движется относительно (К) равномерно и прямолинейно с некоторой скоростью. Пусть в начальный момент времени координатные оси систем совпадают. Через некоторый промежуток времени у этих систем отсчета совпадают только, например, оси OX и OX' (движение системы К' происходит в направлении оси OX системы К). Если в некоторой точке В, находящейся в подвижной системе, произошла вспышка света, то свет одновременно (по часам подвижной системы) достигнет точек А и С, расположенных на одинаковом расстоянии от В. Эта вспышка света будет замечена в неподвижной системе отсчета (системе К). Так как свет распространяется с одинаковой скоростью во всех направлениях и его скорость не зависит от движения источника, то, с точки зрения наблюдателя, находящегося в системе К, свет достигнет точек А и В не одновременно. Следовательно, события, одновременные в одной системе отсчета, действительно не одновременны в другой. Из постулатов А. Эйнштейна следует, что в разных системах отсчета время разное. Поэтому допущение классической физики об абсолютном времени оказывается несостоятельным, как и представления об абсолютном пространстве. Из постулатов теории относительности вытекает тот факт, что пространство и время образуют единую пространственно-временную систему отсчета (пространственно-временной континуум). С точки зрения математики, такая система отсчета представляет собой четырехмерную систему координат. Положение материальной точки, тела в ней может быть задано с помощью четырех координат: x, у, z, и t (x, у, z, - пространственные координаты; t - координата времени, которая вычисляется по формуле: t = i∙c∙t, где ; c - скорость распространения света в вакууме; t - время. Известно, что расстояние между двумя точками в трехмерном пространстве определяется соотношением . (9.14) В четырехмерном пространстве (в теории относительности) расстояние между двумя точками, которое называют интервалом между двумя событиями, можно определить следующим образом: (9.15) Можно показать, что интервал между двумя событиями в пространственно-временной системе отсчета всегда равен нулю (S1,2=0). Это позволяет утверждать, что интервал между двумя событиями в теории относительности инвариантен по отношению к переходу из одной системы отсчета в другую. 9.3. Преобразования Лоренца для координат и времени Формулы преобразования координат, при переходе из одной системы отсчета в другую, в теории относительности называют преобразованиями Лоренца. Для получения преобразований Лоренца выберем две инерциальные системы отсчета К и К'. Предположим, что система К' движется равномерно и прямолинейно относительно системы К со скоростью v. В начальный момент времени системы К и К' совпадали. Для любого другого момента времени расположение координатных осей систем сохраняется. При этом любая точка имеет одни и те же координаты у, z и у', z'. Координаты x и t связаны функционально: Таким образом, формулы преобразования координат можно записать в виде x = f(x', t'); у = у'; z = z'; t = F(x', t'). (9.16) Формулы преобразования координат не должны изменять интервал между двумя событиями в силу его инвариантности, что возможно в том случае, когда выбранные системы отсчета равномерно вращаются относительно начала координат и относительно друг друга. В силу начальных условий положение точки М в каждой из систем отсчета может быт определено координатами М(x,t) и М(x',τ') (рис.9.2). Из рисунка видно, что координата x = OA = ОВ - АВ = ОВ - МС'. OB = x'×cosj; MC' = τ'×sinj (D MC'B'); τ = AM = AA' + A'M; AA' = OC = τ'×cosφ; A'M = x'×sinφ. Следовательно, формулы преобразования координат принимают вид x = x'×cosφ - τ'×sinφ; у = у'; z = z'; τ = τ'×cosφ + x'×sinφ. (9.17) Для точек, совпадающих с началом координат (O; O'), имеем x = v×t; τ = ict; x' = 0; τ' = ict'. Подставляя значения x, τ, x', τ' в формулы преобразования, получим x = - τ'×sinφ; τ = τ'×cosφ. Разделив x на τ, имеем . (9.18) Из тригонометрических соображений ; . Подставляя значения sinφ и cosφ в формулы преобразований с учетом τ=ict, τ' = ict', будем иметь ; у = у'; z = z'; . (9.19) Полученные соотношения называют обратными преобразованиями Лоренца. Прямые преобразования Лоренца: ; у = у'; z = z'; . (9.20) 9.4. Следствия из преобразований Лоренца
|
|||||
Последнее изменение этой страницы: 2016-09-13; просмотров: 807; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.223.205.163 (0.013 с.) |