Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Применение низкоинтенсивного лазерного излучения в стоматологии↑ ⇐ ПредыдущаяСтр 7 из 7 Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Анализ литературных данных по лечению заболеваний слизистой оболочки рта и пародонта показывает, что некоторые средства, особенно антибиотики и стероидные препараты, изменяют окислительно-восстановительный потенциал слюны, ослабляют активность лизоцима, способствуют развитию аллергических реакций, обусловливают снижение резистентности организма к патогенным воздействиям. Все это затрудняет течение и лечение патологического процесса в слизистой оболочке рта и пародонте. Эти факторы вызывают необходимость изыскания новых методов лечения – без применения лекарственных средств. Одним из них является физиотерапия, а среди наиболее эффективных – низкоинтенсивное лазерное излучение. Лазерное излучение достоверно повышает пролиферативную активность клеток в 1,3-3,5 раза. Было установлено, что НИЛИ оказывает на травматический дефект слизистой оболочки рта противовоспалительное действие, способствует ускорению эпителизации и органоспецифическому восстановлению тканей слизистой оболочки в области дефекта. Такой эффект, в первую очередь, обусловлен интенсификацией синтеза ДНК в клетках. Установлено, что в момент облучения интенсивность кровоснабжения возрастает на 20%. При воспалении излучение лазера вызывает общий и местный эффекты. Общие эффекты выражаются в увеличении неспецифических гуморальных факторов защиты (комплемент, интерферон, лизоцим), общей лейкоцитарной реакции, стимуляции костномозгового кроветворения, повышении фагоцитарной активности микро- и макрофагальной систем. Возникает десенсибилизирующий эффект, происходят активация иммунокомпетентной системы, клеточной и гуморальной специфической иммунологической защиты, повышение общих защитно-приспособительных реакций организма. Местные эффекты определяются основными элементами воспалительной реакции: экссудация, альтерация, пролиферация. Экссудация: дилатация сосудов, активация микроциркуляции с последующей вазоконстрикцией – предотвращение развития фазовых нарушений микроциркуляции и нормализация кровообращения в сочетании с нормализацией проницаемости сосудистой стенки (сосудисто-тканевого барьера), уменьшение отека ткани. Под влиянием излучения НИЛИ происходит оптимальное формирование нейтрофильного и моноцитарного барьеров, повышение фагоцитарной активности микро- и макрофагов, продукции бактерицидных субстанций и стимуляторов роста, стимуляция пролиферации, активация барьерных свойств слизистой оболочки рта. Альтерация: активация функций митохондрий и других органелл клеток, метаболизма с увеличением потребления кислорода и активацией тканевого дыхания. Одновременно подавляются анаэробные процессы, предотвращается развитие ацидоза и вторичных дистрофических изменений, в итоге облегчается регенерация поврежденных тканей. Пролиферация: стимуляция системы ДНК–РНК–белок, увеличение митотической (пролиферативной) активности клеток, активация реакции соединительной ткани. Морфологически клеточная реакция проявляется в ускорении и усилении образования фибробластического барьера (на фоне выделения стимуляторов роста), стимуляции образования грануляционной ткани, ускорении созревания фибробластов, активации образования коллагеновых волокон и созревания грануляционной ткани. В результате происходят быстрая и более физиологичная эпителизация, ускоренная и полноценная регенерация слизистой оболочки в области поражения. Терапевтическое действие (стимуляция) процессов регенерации ткани выражается в активации системы ДНК–РНК–белок, усилении синтеза нуклеиновых кислот и ядерных белков, возрастании массы ядра, увеличении синтеза цитоплазматических белков и накоплении их в период интерфазы до критического уровня. Происходят стимуляция митозов, ускоренное и увеличенное размножение клеток соединительной ткани, эпителия. Показания к лазеротерапии: пародонтит в стадии обострения, пародонтоз (гиперестезия), герпес губ и герпетический стоматит взрослых, синдром Мелькерссона-Розенталя, хронический рецидивирующий афтозный стоматит, десквамативный глоссит, хронический гингивит, язвенный гингивит, травматические повреждения слизистой оболочки рта, многоформная экссудативная эритема и др. Противопоказания: все формы лейкоплакии, а также явления пролиферативного характера на слизистой оболочке рта (папилломатоз, ограниченный гиперкератоз, ромбовидный глоссит); тяжело протекающие заболевания сердечно-сосудистой системы (атеросклеротический кардиосклероз с выраженным нарушением коронарного кровообращения, церебральный склероз с нарушением мозгового кровообращения II–Ш стадии), гипертоническая болезнь III стадии, гипотония; выраженная и тяжелая степень эмфиземы легких; туберкулезная интоксикация; опухоли злокачественные; доброкачественные опухоли при локализации в области головы и шеи; тяжелая степень сахарного диабета в некомпенсированном состоянии или при неустойчивой компенсации; заболевания крови; состояние после инфаркта миокарда (в течение 6 мес после эксцесса).
УЛЬТРАЗВУКОВАЯ ОБРАБОТКА РАН. В настоящее время используются 2 способа ультразвуковой обработки ран - «ультразвуковым ножом» и озвучиванием гнойных ран (ультразвуковая кавитация), полость которых заполняется антибактериальным раствором. Метод «ультразвукового ножа» основан на значительной биологической потенции ультразвуковых колебаний, обладающих антимикробным и противовоспалительным действием. Однако в эксперементе убедительно показано, что применение ультразвуковых методов без антисептиков и антибиотиков не в состоянии предупредить развитие воспалительного процесса. В последние годы широко применяются в клинике ультразвуковая кавитация. В основу метода ультразвуковой обработки биологических тканей заложены следующие положения: - метод должен основываться на комплексном действии лекарственных препаратов и энергии ультразвукового поля; - лекарственное вещество следует применять в растворе жидкости; - введение ультразвуковых колебаний в зону обработки следует выполнять через слой раствора лекарственного вещества. Сущность метода состоит во введении в полость гнойной раны раствора антибиотика или антисептика, который подвергается воздействию ультразвуковых колебаний с помощью аппарата УРСК- 7Н и волноводов с диаметром излучающей поверхности от 4 до 8 мм. Время обработки зависит от размеров раны и колеблется от 3 до 10 мин. В процессе ее излучающая поверхность волновода (торец) проходит по всей поверхности раны, не касаясь ее тканей. Отмечается подавление роста микрофлоры, создание высокой концентрации лекарственных вещевств в ране и окружающих ее биологических тканях, более быстрое очищение ран и развитие грануляций, сокращение сроков лечения. Под воздействием ультразвука в жидкости возникает ряд эффектов – звуковое и радиационное давление, акустические потоки, кавитация и другие явления, способствующих возникновению сложного комплекса физико - химических и биологических процессов. Они обеспечивают интенсивную очистку ран с эмульгированием раневого отделяемого, введение лекарственных веществ в ткани на глубину от 2,5 -3 см (кожа, мышцы), до 2- 3 мм (костная ткань), подавление способности микробных клеток к размножению и ускорение репаративных процессов. Наибольший бактерицидный эффект получен при использовании в качестве акустической среды растворов антибиотиков и диметилсульфоксида. Отмечается, что при обработке ран ультразвуком повышается активность оксидоредуктаз, участвующих в бактерицидной системе нейтрофилов. Ультразвуковые колебания низкой и средней частоты оказывают на организм лечебное действие: болеутоляющее, спазмолитическое, рассасывающее, противовоспалительное, десенсибилизирующее и фибролитическое. Ультразвуковые колебания как бы выполняют эффективный микромассаж тканей и клеток, и тем самым значительно улучшают снабжение тканей кровью. Ультразвуковые колебания низкой и средней частоты по- разному действуют на течение раневого процесса. Низкочастотный ультразвук ускоряет очищение раны за счет кавитационного разрушения клеточных элементов отделяемого и выделения лизосомальных энзимов, бактерицидных катионных белков. Эти факторы усиливают протеолитическую активность экссудата, стимулируют фагоцитарную и антибактериальную активность нейтрофилов. Среднечастотный ультразвук стимулирует вторую фазу раневого процесса. Это выражается в более раннем появлении капилляров и фибробластов, ускоренной организации грануляционной ткани. Наиболее эффективно сочетание ультразвука низкой и средней частоты. В некротизированных тканях ультразвук действует как дезинтегратор и ускоряет их отторжение. В этом случае эффект ультразвука обусловлен и глубоким проникновением антибиотика в пораженные ткани. Методика: для работы используют ультразвуковой аппарат УРСК – 7 Н-22. Озвучивание проводят при резонансной частоте 25,9 кГц, мощности 2 ВТ/см2 и амплитуде колебаний 0,05 мм. До ультразвуковой обработки полость раны заполняется раствором антибиотика в соответствии с чувствительностью микрофлоры. Затем включаются ультразвуковые колебания и волновод погружается в слой жидкости. В процессе обработки излучающая поверхность волновода должна обойти всю раневую поверхность раны. При этом надо стремится к тому, чтобы ось волновода все время была бы по возможнотси перпендикулярна к поверхности обрабатываемого участка, а расстояние от торца волновода до стенок раны должно составлять2-3 мм, т.е. обработка производится без касания торца волновода раневой поверхности. Если какой- либо участок раны будет пропущен, то в этом месте не произойдет эффективной очистки и проникновения растворов в биологическую ткань. Желательно, чтобы во время обработки торцовая поверхность волновода находилась под слоем раствора, имеющим толщину не менее 3мм. С увеличением расстояния между излучателем и озвучиваемой поверхностью эффективность обработки снижается, время обработки возрастает в 1,7 раза. Количество обработок зависит от первоначального состояния раны и скорости ее заживления. Результат ультразвуковой обработки зависят также от среды озвучания. Накопление антибиотика в тканях зависит от времени воздействия ультразвука: при 5 минутном озвучании концентрация препарата в тканях в 2 раза выше, чем при 3-х минутной кавитации. При ультразвуковой обработке создается возможность целенаправленного воздействия на раневую инфекцию путем подбора препарата по чувствительности микрофлоры, использовании различных антисептиков и протеолитических ферментов. УЛЬТРАФИОЛЕТОВОЕ ОБЛУЧЕНИЕ КРОВИ (УФОК). Ультрафиолетовое облучение крови (УФОК) применяется в медицине около 70 лет. Задуманное первоначально как способ уничтожения микроорганизмов в циркулирующей крови при сепсисе, УФОК стало универсальным методом лечения при заболеваниях, для которых характерны иммунодефицит; ишемия; нарушение текучести крови; угнетение синтеза энергии. В 1841г. – немецкий физик Ritter химическим методом открыл невидимое солнечное излучение, которое было названо ультрафиолетовым. В 1877г. Daun и Blant установили бактерицидное действие ультрафиолетовых лучей. Широко использовал ультрафиолетовое излучение N.Finsen в своем Институте светолечения в Копенгагене. За выдающиеся теоретические разработки и практические достижения ему была присуждена в 1903г. Нобелевская премия. Впервые УФОК с лечебной целью применил E.Knott в 1928 г. у больных с сепсисом. Он же создал первый аппарат для фотомодификации крови вне организма. В нашей стране экспериментальное изучение и клиническое применение аутокрови облученной ультрафиолетовыми лучами, впервые провели в 1937 г. А.Н. Филатов и Г.Касумов. Они также получили первые положительные результаты при применении этого метода при лечении различных видов анемий. В 1977 г. Л.В. Поташов и А. Шульга применили внутривенное введение облученной крови у больного с гипоксическим состоянием.
Механизм действия УФОК. Лечебное действие УФОК сложно и многообразно. Оно обусловлено фотобиологическими процессами на молекулярном и клеточном уровне, возникающими при поглощении оптического излучения кровью, структурно-функциональными и биохимическими изменениями при смешивании определенного объема фотомодифицированной крови с необлученной, а также небольшой кровопотерей и поступлением в организм консерванта. Разнообразие первичных фотопроцессов, возникающих в крови после УФОК, определяет множественность развивающихся в организме лечебных эффектов в ответ на трансфузию фотомодифицированной крови. Доказано, что вначале в организме происходит уменьшение, а затем повышение общего количества лейкоцитов. Во время лечения уровень общего количества лейкоцитов повышается в среднем на 25%. Это повышение наступает как у лиц с повышенным, так и пониженным количеством лейкоцитов. В популяции лейкоцитов наблюдается возрастание фагоцитарной активности моноцитов и гранулоцитов секретирование нейтрофилами бактериальных катионов белков, усиление экспрессии рецепторов лимфоцитов, участвующих в реакции розеткообразования Важнейшими звеньями терапевтического действия УФОК считают стимуляцию кроветворения, структурные изменения поверхности эритроцитов, при этом у эритроцитов уменьшается плотность мембран, повышается деформируемость клеток, снижается способность к агрегации, следствием чего является уменьшение вязкости крови, улучшение ее реологических свойств и микроциркуляции, нормализация транспорта ионов и газов через мембрану. Тромбоциты при этом подвергаются обратной агрегации и секретируют широкий спектр биологически активных веществ. УФОК приводит к активации нейрогуморальных систем организма и обмена веществ, устранению гипоксемии, изменению клеточного и гуморального иммунитета, а также обладает бактерицидным эффектом. Структурно-функциональные изменения белков плазмы приводит к усилению связывающей способности альбумина, возрастанию активности антител и белков системы комплемента. Ему присуще также общеукрепляющее, десенсибилизирующее и противовоспалительное действие. В свете изложенного становятся понятными широкие показания к лечебному использованию метода. В механизме действия УФОК нельзя не учитывать и значение умеренного кровопускания с последующей реинфузией крови, которое является мощным стимулятором эритробластической и миелоидной функции костного мозга, повышает активность гипофизарно-надпочечниковой системы, сопротивляемость организма остро развившейся гипоксии. Противопоказания к применению УФОК. Противопоказаниями для назначения УФОК являются: фотодерматит, все формы порфирий, острые нарушения мозгового кровообращения (в течение первых 3-х месяцев), острый инфаркт миокарда (первые три недели), злокачественные новообразования, кровотечения, терминальные стадии лейкоза, беременность, сочетание с приемом некоторых лекарственных препаратов (тетрациклины, фенотиазиды, сульфаниламиды), склонность к гипогликемии. Аппаратура и методика проведения УФОК По принципу воздействия на кровь существующие способы экстракорпорального облучения крови ультрафиолетовыми лучами могут быть разделены на открытые и закрытые, фракционные и проточные. Наиболее совершенным и распространенным способом УФОК сегодня является проточный. Устройства, применяющиеся в настоящее время для ультрафиолетового облучения крови, как правило, состоят из: 1) источника оптического излучения с блоком питания; 2) кварцевой кюветы(трубки), к которой присоединяется система для забора и возврата венозной крови; 3) насоса для перфузии крови; 4) емкости с гемоконсервантом; пластикового мешка или стеклянного флакона, в которые забирают кровь. Стандартная методика УФОК состоит в следующем: систему для переливания крови разрезают перед капельницей. Короткий отрезок системы с иглой соединяют с флаконом, содержащим гемоконсервант, и с оливой кюветы. Длинный отрезок системы присоединяют к другому концу кюветы и заправляют в роликовый насос. Кювету помещают в окне аппарата. Собранную систему заполняют гемоконсервантом из флакона. После пункции локтевой вены больного насос включают в режим работы "от пациента" на скорости "быстро" или "медленно". Облучение крови происходит в момент ее прохождения по кювете. По мере накопления и стабилизации во флаконе с консервантом расчетной дозы крови (1-3 мл/кг массы тела больного) режим работы насоса переводится в положении "к пациенту" и кровь возвращается больному. Объем облучаемой крови составляет 1-3 мл/кг массы тела больного, доза облучения - от 600 до 800 Дж/м2. Сеансы УФОК проводятся каждый день или через сутки. Курс лечения составляет 4-6 сеансов, общее их количество зависит от конкретной ситуации, но не более семи. Наиболее часто в клинической практике используются аппараты типа "Изольда" МД-73М, “ЭУФОК” и "Надежда". Последний отличается тем, что наряду с многоразовыми кварцевыми кюветами в комплекте имеются одноразовые. Основными недостатками данных устройств являются: а) невозможность контроля поглощенной кровью дозы световой энергии и изменения спектрального диапазона оптического излучения, б) отсутствие одноразовых кювет для аппарата типа “Изольда”, в) применяемый для изготовления одноразовых кювет для аппарата “Надежда” поливинилхлорид сильно поглощает световую энергию. Побочные реакции и осложнения. При УФОК могут наблюдаться: пирогенные реакции, которые чаще всего обусловлены пренебрежением правилами асептики при монтаже систем; тромбоз в системе экстракорпорального кровообращения. Аллергические реакции по типу фотодерматита; тромбофлебиты в месте пункций; головные боли, обусловленные струйным введением фотомодифицированной крови или наличием у пациента скрытой гипертензии или гипотонии. ГИПЕРБАРИЧЕСКАЯ ОКСИГЕНАЦИЯ (ГБО) (греч. hyper- + baros тяжесть, лат. oxygenium кислород; синоним: гипербарооксигенотерапия, оксигенобаротерапия, оксибаротерапия, гипербароксия, гипербарическая терапия) — метод насыщения организма кислородом под повышенным давлением с профилактической или лечебной целью. В связи с широким развитием подводных лодок и работ, зачастую осложняемых кессонной болезнью у водолазов и подводных моряков, возник интерес к физиологии человека под повышенным давлением. В 19 веке появилась новая отрасль медицины - баротерапия - лечение многих заболеваний сжатым воздухом. В 1960 г. появилась статья голландского сердечно-сосудистого хирурга J.Boerema под интригующим названием «Жизнь без крови». В ней была показана возможность существования организма практически без гемоглобина в окружении чистого кислорода под повышенным давлением только за счет физически растворенного в плазме кислорода. Для того, чтобы яснее представить себе действия кислорода в гипербарических условиях приведем несколько цифр. Так, при вдыхании чистого кислорода под давлением в 2 атм количество кислорода в легких возрастает в 18 раз. А по закону Генри-Дальтона, количество газа, физически растворенного в жидкости, прямо пропорционально давлению этого газа, находящегося над жидкостью. При вдыхании воздуха при нормальном атмосферном давлении в 100 мл крови содержится 0,3 мл кислорода. При вдыхании чистого кислорода под давлением в 2 атм это число увеличивается до 6 мл, что составляет 6 об.%, т.е. вдыхание чистого кислорода при этих условиях будет обеспечивать метаболические процессы даже при отсутствии гемоглобина. В клинической медицине гипербарическая оксигенация (ГБО) применяется с двоякой целью: - устранения кислородного голодания, восстановления и стимулирования нарушенных процессов тканевого окисления при заболеваниях- доминирующей особенностью которых является генерализованная или локальная гипоксия; - токсического и угнетающего действия кислорода на рост клеток новообразования и анаэробных возбудителей инфекции. Гипероксия в лечении этих заболеваний сочетается с применением противоопухолевых химиопрепаратов, радиационной терапии или антибиотиков. ГБО увеличивает: - общее содержание кислорода в крови и тканях; - градиент его напряжения (рО2); - способность кислорода диффундироватъ из крови к тканям; - эффективность коллатерального кровообращения. Поэтому кислород под повышенным давлением стал незаменимым лечебным мероприятием при гипоксических состояниях, возникающих при многих хирургических и терапевтических заболеваниях. Здесь следует напомнить, что существует несколько видов гипоксии. Из них наиболее важными считаются: гипоксическая, циркуляторная, гемическая и гистотоксическая гипоксии. Гипоксическая гипоксия возникает, когда в окружающем воздухе кислорода недостаточно (большая высота) или при нарушении диффузии кислорода из альвеол в кровь. Отличительным признаком этого вида гипоксии является снижение рО2 в артериальной крови. Циркуляторная (гемодинамическая) гипоксия (снижение содержания кислорода в венозной крови при нормальной величине этого показателя в артериальной крови) развивается при уменьшении сердечного выброса или уменьшении скорости кровотока. Гемическая гипоксия (снижение содержания О2 в артериальной крови при нормальной величине артериального рО2) развивается при кровопотере или снижении кислородсвязывающих свойств гемоглобина (сродство НЬ к кислороду). Гистотоксическая или тканевая гипоксия развивается при нарушении усвоения О2 клетками из-за снижения дыхательных ферментов и др. причин. В основе ГБО лежит повышение парциального давления кислорода (рО2) в жидких средах организма (плазме, лимфе, тканевой жидкости). Это приводит к соответствующему возрастанию их кислородной емкости и сопровождается увеличением диффузии кислорода в гипоксические участки тканей, что дает возможность полного удовлетворения потребности тканей в кислороде. Действие ГБО наиболее полно проявляется при отсутствии нарушений функции системы кровообращения. В целом терапевтический эффект ГБО обусловлен возможностью компенсировать кислородную задолженность организма при недостаточности внешнего дыхания, кислородсвязывающей функции крови, дефиците регионарного или общего кровоснабжения и др. К нормальным реакциям организма на действие ГБО относятся урежение и углубление дыхания, замедление частоты пульса, снижение сердечного выброса и объема органного кровотока, увеличение периферического сосудистого сопротивления. Однако иногда (обычно в первые 1-3 сеанса) могут выявляться признаки кислородной интоксикации в виде раздражения ЦНС (судорожный синдром) или расстройства легочной функции (одышки, цианоза), что связано с повышенной индивидуальной чувствительностью больных к кислороду. В таких случаях не рекомендуется продолжать курс ГБО. Другими противопоказаниями к использованию ГБО являются наличие замкнутых, не дренируемых полостей в легком (каверна, абсцесс, киста) и других тканях и органах, тяжелые формы артериальной гипертензии, эпилепсия или какие-либо иные судорожные приступы в анамнезе, нарушение проходимости слуховых труб, клаустрофобия. Эти противопоказания относительны, и большинство из них может быть устранено, например, дренированием кист или каверн легкого, применением нейролептиков и др. Гипербарическая оксигенация может быть использована при лечении различных заболеваний. Так, при облитерирующих поражениях периферических артерий ГБО позволяет увеличить объем кислорода, проходящего через ишемизированные ткани, в условиях редуцированного кровотока. При лечении хирургической инфекции (сепсиса, перитонита, абсцессов мягких тканей, внутренних органов и т.д.) ГБО активно воздействует на некоторые параметры гомеостаза и изменяет биологические свойства возбудителей инфекции, особенно анаэробов. Показано применение ГБО при тяжелых черепно-мозговых травмах в качестве патогенетического средства компенсации гипоксии головного мозга, в остром периоде тяжелой открытой травмы конечностей с целью профилактики нагноительного процесса, при ожоговой болезни и т.д. В кардиологии ГБО с успехом используется для лечения ишемической болезни сердца, декомпенсации кровообращения у больных ревматическими пороками сердца (способствует улучшению сократительной функции миокарда, увеличению его функционального резерва). ГБО значительно повышает уровень регенераторных процессов в желудочно-кишечном тракте у больных язвенной болезнью желудка и двенадцатиперстной кишки, что способствует ускорению рубцевания язв у большинства больных. Перспективным методом лечения является применение ГБО при диффузных заболеваниях печени, особенно при остром вирусном гепатите с явлениями энцефалопатии. Включение ГБО в комплекс мероприятий, проводимых при гнойно-деструктивных заболеваниях легких (острых и хронических абсцессах, трахео- и бронхопульмональных свищах, эмпиеме плевры), а также хронических неспецифических поражениях этого органа (вяло текущих обострениях хронической пневмонии, хроническом легочном сердце и др.). обеспечивает повышение лечебного эффекта. Гипербарическая оксигенация является эффективным компонентом комплексного лечения декомпенсированного сахарного диабета. Наилучшие результаты прослежены у больных с инсулинзависимым, тяжелым и среднетяжелым течением заболевания, длительность которого не превышает 10 лет, при артериальной гипоксемии, метаболическом ацидозе и нарушениях микроциркуляции. Значительный опыт использования ГБО в практике акушерства, гинекологии и неонатологии показал многофакторность ее воздействия, прежде всего как мощного антигипоксического компонента терапии и регулятора метаболических процессов. Например, ГБО, как правило, предупреждает неблагоприятный исход родов у рожениц с тяжелым гипоксическим синдромом, связанным, в основном, с сердечно-сосудистой патологией. Возможности ГБО очевидны при асфиксии и других терминальных состояниях новорожденных и детей старшего возраста, при различных гнойно-воспалительных заболеваниях, гепатите и парезе кишечника, гемолитической болезни новорожденных, нейросенсорной тугоухости и т.д. Гипербарическую оксигенацию эффективно применяют при различных заболеваниях в практике неврологии и психиатрии, офтальмологии и стоматологии, при проведении лучевой терапии опухолей, а также при лечении больных с отравлением угарным газом, при газовой эмболии, явлениях септического шока и др. Опасности и осложнения ГБО: · взрыв в барокамере; · кессонная болезнь; · отравление кислородом. Для профилактики взрыва в барокамере рекомендуется: давать кислород через носо-ротовые катетеры, одевать огнеупорную одежду, покрывать операционный стол антистатическим материалом, надежно заземлять больного, ограничить внесение в камеру электрических приборов, исключить применение взрывоопасных наркотических веществ и т.д. При соблюдении этих правил риск возникновения пожара в барокамере становится незначительным. Быстрое снижение давления в камере приводит к возникновению кессонной болезни. Признаки газовой эмболии описаны впервые Воу1е еще в 1670 году. С тех пор накопилось много научных материалов, подтверждающих, что пузырьки газа, образующиеся при быстрой декомпрессии, нарушают кровоснабжение тканей и ведут к асфиксии, некрозу костей, расстройствам функций головного мозга, параличам и смерти. Однако при соблюдении правил постепенной декомпрессии можно легко избежать развитие этого грозного осложнения. Токсическое действие кислорода на организм проявляется в острой и хронической формах. При острой форме на передний план выдвигается поражение ЦНС, а при второй - поражение легких. Клиническая картина острого отравления кислородом проявляется судорогами, потерей сознания, головокружением, тошнотой, рвотой, расстройствами зрения, именуемых физиологами «эффектом П. Бера». Хроническое отравление кислородом приводит к тяжелым легочным повреждениям и к дыхательной недостаточности и называется «эффектом Смита». Ядовитое влияние кислорода под высоким давлением связывают с увеличением стационарной концентрации активированных форм кислорода и с интенсификацией перекисного и свободно радикального окисления. Об этом говорят активация перекисного окисления липидов (ПОЛ) и снижение показателей антиоксидантных систем организма. Однако необходимо отметить, что токсическое действие кислорода проявляется при высоких давлениях, которые в клинической практике не используются. Клинико-физиологические эффекты ГБО (по С.Н.Ефуни, 1986): 1. Нормализация энергетического баланса клетки (биоэнергетический эффект). 2. Активирование биосинтетических и репаративных процессов (репарапивный эффект). 3. Предупреждение образования токсических метаболитов и активирование их разрушения (детоксикационный эффект). 4. Подавление жизнедеятельности микроорганизмов (антибактериальный эффект). 5. Деблокирование инативированного гемоглобина, миоглобина и цитохромоксидазы (деблокирующий эффект). 6. Иммунокорригирующий эффект. 7. Повышение радиочувствительности клеток злокачественных опухолей. 8. Снижение черепно-мозгового давления, улучшение мозгового кровотока в зоне поражения и другие эффекты. Типы лечебных барокамер Лечебные барокамеры бывают одноместными и многоместными. В многоместных барокамерах кроме одного или нескольких больных обязательно должен находиться и медицинский персонал. Лечебные барокамеры по своему назначению делятся на: терапевтические, реанимационные, радиологические (дня лучевой терапии онкологических больных), для взрослых, новорожденных и детей до 1 года, а также стационарные, портативные, исследовательские, операционные и др. В условиях барооперационной показано проведение некоторых реконструктивных оперативных вмешательств, прежде всего тех, при которых не исключается возможность развития у пациента гипоксической комы (пластическая реконструкция трахеи, вмешательства на плечеголовном сосудистом стволе, коррекция ряда дефектов при заболеваниях сердца).
2. Цель и задачи Цель занятия: изучить действие основных физических методов антисептики на иммунный статус. Студент должен знать: 1. Механизм бактерицидного действия ультрафиолетовых и лазерных лучей, озона, ультразвука. 2. Законы физики, являющиеся основой физической антисептики. 3. Устройство различной аппаратуры, используемой в физической антисептике. Студент должен уметь: 1. Использовать антисептические средства при проведении глубокой и поверхностной антисептикотерапии. 2. Наладить систему для активного и проточно-промывного дренирования гнойной раны.
3. Контрольные вопросы 1. Лазерные лучи. Механизмы действия на Т- и В-лимфоциты и гуморальный иммунитет. 2. Механизм действия сфокусированных и расфокусированных лазерных лучей. 3. Внутрисосудистая лазеротерапия, показания, противопоказания, сфера их применения. 4. Механизмы действия ультрафиолетовых лучей на различные звенья иммунной системы. 5. Реинфузия облученной УФ-светом аутокрови больного: показания, противопоказания, осложнения, их профилактика и лечение. 6. Гипербарическая оксигенация (ГБО) в медицине. Закон Генри-Дальтона. 7. Устройство аппаратов ГБО техника безопасности при работе опасности осложнения. 8. Механизм действия ГБО на компоненты иммунной системы. 9. Показания и противопоказания к ГБО. Возможные осложнения, их профилактика и лечение. 10. Медицинский озон, его воздействие на клеточный и гуморальный иммунитет. 11. Показания к внутрисосудистой озонотерапии. Возможные осложнения и их профилактика. Перечень литературы 1. В.К. Гостищев Общая хирургия: учебник / М: ГЭОТАР-МЕД. - 2007. - 850 с. 2. С.В. Петров Общая хирургия / СПб.: Питер, - 2005. - 768 с. 3. Общая хирургия: учебник для мед.вузов / Под ред. П.Н. Зубарева, М.И. Лыткина, М.В. Епифанова. / СПб.: СпецЛит, 1999. - 472 с. 4. Лекции. 5. Учебное пособие «Современные методы антисептикотерапии (СМАТ)» / Под ред. Л.Б. Канцалиева и соавт. перераб. и дополн.– Нальчик, 2012. – 165 с.
|
||||
Последнее изменение этой страницы: 2016-09-05; просмотров: 918; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.175.66 (0.018 с.) |