Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Эволюция представлений о строении мембран

Поиск

Наличие мембран вокруг живых клеток было установлено более ста лет назад в работах Негели К., который в 1855 г. обнаружил, что неповрежденные клетки могут изменять свой объем при изменении осмотического давления окружающей среды. Эти исследования были продолжены Овертоном Е., показавшим, что неполярные молекулы легче проходят через клеточную мембрану, чем полярные соединения.

На основе этих наблюдений он впервые высказал предположение, что клеточная мембрана имеет липидную природу. Развитие идей о структуре мембран существенно продвинулось благодаря работам Гортера Е. и Грендела Ф., проведенным в 1925 г. Эти авторы впервые выдвинули концепцию липидного бислоя. Идея возникла на основе простого эксперимента. Липиды эритроцитов экстрагировали ацетоном и затем получали из них тонкую пленку на поверхности воды.
С помощью поплавка сжимали слой липидных молекул на границе раздела вода–воздух до тех пор, пока этот слой не начинал оказывать сопротивление дальнейшему сжатию; это явление было объяснено образованием плотно упакованной мономолекулярной липидной пленки. Измерение площади, занимаемой липидами, и сравнение ее с площадью поверхности эритроцитов, из которых эти липиды были экстрагированы, дали соотношение 2:1. Отсюда был сделан вывод, что мембрана эритроцитов состоит из липидных молекул, расположенных в два слоя. По-видимому, этот вывод Гортера Е. и Грендела Ф. оказался правильным только благодаря взаимной компенсации ошибок (во-первых, экстракция ацетоном извлекает не все липиды, во-вторых, они дали заниженную оценку площади поверхности эритроцитов, использовав для ее определения высушенные клетки). Однако в историческом плане эта работа имела большое значение, поскольку концепция липидного бислоя как структурной основы биологических мембран на самом деле оказалась верной. Мысль о том, что с мембранами связаны белки, высказана десятью годами позже Даниелли Дж. в связи с необходимостью объяснить явное расхождение между поверхностным натяжением на границах раздела масло–вода и мембрана–вода. Была высказана гипотеза, что мембрана состоит из двойного липидного слоя, и предположено, что белок располагается на ее поверхности – модель Даниелли–Дэвисона, или модель «сэндвича» (рисунок 1.2).

 

1 – углеводородные гидрофобные цепочки; 2 – полярные
гидрофильные группы молекулы; 3 – полярные поры, по которым
вещества диффундируют в клетку

 

Рисунок 1.2 – Модель строения биологических мембран
Даниелли – Девисона

 

На рисунке 1.2 показан бимолекулярный липидный слой, окруженный с двух сторон монослоями белка. Это была очень удачная
модель, и в течение последующих 30 лет многочисленные экспериментальные данные, особенно полученные с помощью дифракции рентгеновских лучей и электронной микроскопии, полностью подтвердили
ее адекватность. Основными компонентами биологической мембраны являются липид и белок, вопрос о взаимном расположении этих
компонентов в мембране стал предметом многочисленных дискуссий, так как обнаружилось, что мембраны выполняют разнообразные функции.

В 1959 г. Робертсон Дж. Д. предположил, что все клеточные мембраны построены по единому принципу, и высказал концепцию унитарной (или единообразной) мембраны (рисунок 1.3).

Рисунок 1.3 – Унитарная схема асимметричного строения

биомембраныРобертсона

 

Предложенная модель во многом сходна с классической моделью Даниелли Дж.: основу мембраны составляет липидный бислой, а нелипидные компоненты (прежде всего белки) в полностью развернутой конформации лежат на поверхности бислоя, связываясь с липидами за счет электростатических и гидрофобных взаимодействий. В модели Робертсона нашла отражение еще одна важная структурная особенность мембраны – ее асимметрия.

Последующий прогресс в мембранологии, в результате которого сформировались современные представления о структуре биомембран, в значительной мере был достигнут благодаря успехам в изучении свойств мембранных белков. Электронно-микроскопические исследования с применением метода замораживания–скалывания показали, что в мембраны встроены глобулярные частицы, а биохимикам с помощью детергентов удалось диссоциировать мембраны до состояния функционально активных «частиц». Данные спектральных исследований указывали, что для мембранных белков характерно высокое содержание α-спиралей и что они, вероятно, образуют глобулы, а не распределены в виде монослоя на поверхности липидного бислоя. Неполярные свойства мембранных белков наводили на мысль о наличии гидрофобных контактов между белками и внутренней неполярной областью липидного бислоя. Тогда же были разработаны методы, позволившие выявить текучесть липидного бислоя. Сингер и Николсон свели воедино все эти идеи, предложив в 1972 г. новую модель молекулярной организации биомембран – жидкостно-мозаичную модель (рисунок 1.4).

 

1 – углеводные фрагменты гликопротеидов; 2 – липидный бислой;

3 – интегральный белок; 4 – «головки» фосфолипидов;

5 – периферический белок; 6 – холестерин;

7 – жирнокислотные «хвосты» фосфолипидов

Рисунок 1.4 – Модель жидкостно-мозаичной мембраны

Сингера и Николсона

 

Согласно жидкостно-мозаичной модели:

1) Структурной основой биомембран является липидный бислой, в котором углеводородные цепи молекул фосфолипидов находятся в жидкокристаллическом состоянии.

2) В липидный бислой, имеющий вязкость растительного масла, погружены или встроены молекулы белков, способные передвигаться по мембране.

В противоположность прежним моделям, рассматривающим мембраны как системы из жестко фиксированных компонентов, жидкостно-мозаичная модель представляет мембрану, как «море» жидких липидов, в котором плавают «айсберги» белков. В зависимости от прочности связи с мембраной белки в рамках мозаичной модели подразделяются на два типа: периферические и интегральные.

К периферическим относятся белки, которые связаны с мембраной за счет полярных и ионных взаимодействий и относительно легко отделяются от нее в мягких условиях, например, при промывании буферными растворами с различными значениями рН или ионной силы либо растворами, содержащими комплексообразующие вещества типа ЭДТА.

Интегральные белки имеют на своей поверхности большие гидрофобные участки и располагаются внутри мембраны. Для выделения интегральных белков необходимо сначала разрушить липидный бислой.

Жидкостно-мозаичная модель строения биомембран в настоящее время является общепризнанной, однако следует помнить, что она все же представляет собой упрощенное и схематичное отражение такой сложной и разносторонней системы, как биологическая мембрана. Одним из постулатов этой модели является предположение о свободном движении молекул белков и липидов в двумерной фазе липидного бислоя. Однако вскоре выяснилось, что не все белки и липиды способны к свободному перемещению, в некоторых случаях их подвижность сильно ограничена. Во многих мембранах интегральные белки находятся в фиксированных положениях за счет высокой концентрации белка вследствие его агрегации, образования липидных доменов, а также взаимодействия белков с цитоскелетом, образуемым внутренними структурами клетки.

В некоторых мембранах значительные количества липидов могут находиться в сильно упорядоченном состоянии или, наоборот, в составе небислойных фаз. Это означает, что распределение липидов вдоль поверхности мембраны не является гомогенным, как следовало бы ожидать в случае их свободной диффузии согласно жидкостно-мозаичной модели, а в значительной мере гетерогенно [1].

Кроме того, жидкостно-мозаичная модель не объясняет высокую гетерогенность липидного состава биологических мембран. Необходимо отметить, что липиды биологических мембран различаются не только по структуре полярных групп, но и по степени ненасыщенности и длине углеводородных цепей, а также по способу их присоединения к глицериновому остатку (сложная эфирная, простая эфирная и винильно-эфирная связь). Липидный состав биологических мембран всегда чрезвычайно гетерогенен, и в его построении участвуют сотни химически индивидуальных липидных молекул. Данный факт не согласуется с представлениями о пассивной роли липидов в функционировании мембран в качестве структурной матрицы, в которой расположены мембранные белки [1].

Несмотря на это в настоящее время по-прежнему пользуются жидкостно-мозаичной моделью строения мембраны, но в усложненной форме, в которой отражены новые, специфические, не известные ранее закономерности.

Согласно современным представлениям центральный слой такой мембраны представляет собой текучий липидный бислой с включениями внутримембранных белков. Полагают, что ассоциированные с мембраной белки являются глобулярными. Некоторые из них расположены на полярной поверхности мембраны или частично погружены в ее монослой как с наружной, так и с внутренней стороны. Это так называемые периферические, функционально ассоциированные с мембраной белки, удерживаемые на ее поверхности при помощи нековалентных связей. Другие, интегральные, белки проходят через всю толщу мембраны, в том числе и через внутренние неполярные ее слои. В интегральных белках последовательность аминокислотных остатков распределена таким образом, что гидрофобные остатки аминокислот формируют структуры, которые пронизывают мембрану, а гидрофильные образуют функциональные домены на внутренней и/или наружной поверхности мембраны. Таким образом, функционально разные белки мембраны образуют в жидкокристаллическом бислое фосфолипидов своеобразную мозаичную структуру. Эта мозаика не является строго фиксированной, что позволяет разным классам ФЛ и минорным липидам мембраны при латеральной диффузии формировать определенные кластеры (участки поверхностного монослоя мембраны).

Плазматическая мембрана содержит много гликолипидов, полярные углеводные части которых (остатки моно- и олигосахаридов) расположены на ее поверхности, что позволяет им выполнять специфичные функции, такие как рецепция (клеточное узнавание) и иммунохимические реакции. Выступающие из бислоя гидрофильные олигосахаридные участки гликолипидов образуют у эукариотических клеток подобие наружной оболочки – гликокаликса.

Определенную роль в стабилизации липидного бислоя играет и слой воды, покрывающий снаружи монослой фосфолипидов и мембранных белков. Такие монослои воды удерживаются на поверхности мембраны за счет водородных связей между полярными «головками» ФЛ и молекулами воды [2]. В бислое индивидуальные липидные молекулы могут перемещаться (латеральная диффузия), что обеспечивает мембране жидкостность и гибкость. Отдельные молекулы ФЛ в зависимости от длины их жирнокислотных цепей способны перемещаться между наружным и внутренним монослоем мембраны, используя механизм флип-флопа.

Все это указывает на то, что бислойная мембрана является единой динамичной и саморегулирующейся системой [3].

На рисунке 1.5 представлена современная более усложненная жидкостно-мозаичная модель мембраны эукариотической клетки.

Рисунок 1.5 – Современная интерпретация жидкостно-мозаичной

модели мембраны (по [4] с изменениями)

 

На рисунке 1.5 видны встроенные в мембрану периферические и интегральные белки и молекулы холестерина; показано взаимодействие мембранных белков с внутриклеточными волокнами цитоскелета (нижняя часть рисунка) и с внеклеточным матриксом, при возможном участии связанных с мембраной гликолипидов и гликопротеинов (верхняя часть рисунка).

Современная интерпретация жидкомозаичной модели объясняет многие свойства биологических мембран, например, неодинаковое число молекул белка на единицу площади, ассиметрию, возможность расположения белков только на внутренней или только на наружной поверхности, разную толщину мембраны и др.

Эта модель позволяет понять высокое электрическое сопротивление мембраны, избирательную проницаемость, изменчивость, а также латеральную диффузию – перемещение отдельных липидов и белков в плоскости наружного монослоя со значительной скоростью.



Поделиться:


Последнее изменение этой страницы: 2016-08-26; просмотров: 4938; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.65.198 (0.01 с.)