Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Нарушение обмена веществ и физиологических функций при гипоксии↑ ⇐ ПредыдущаяСтр 3 из 3 Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Нарушения обмена веществ и физиологических функций, вызванные дефицитом кислородоснабжения, прогрессируют при недостаточности или истощении компенсаторно-приспособительных реакций. Первоначально метаболические нарушения проявляются в уменьшении синтеза макроэргических соединений и изменениях углеводного обмена. Активируются гликолиз, гликогенолиз, увеличивается продукция пирувата и лактата; кислотно-основное состояние смещается в сторону ацидоза. Недостаточность окислительных процессов влечет за собой нарушение липидного, белкового, электролитного обмена. При нарушении метаболизма липидов накапливаются промежуточные продукты обмена: ацетон, ацетоуксусная и (З-оксимасляная кислоты, возрастает перекисное окисление липидов. Накапливаются также промежуточные продукты белкового обмена, устанавливается отрицательный азотистый баланс. Синтетические процессы снижены, при дальнейшем нарастании тяжести гипоксии первичная активация гликолиза сменяется его угнетением; усиливаются процессы деструкции и распада тканей. Клеточные нарушения при гипоксии обусловлены описанными выше изменениями метаболизма. Первичный механизм нарушения клеточных функций при гипоксии связан с нарушением баланса ионов кальция в клетках. Недостаток АТФ в клетке немедленно сказывается на важнейших и весьма энергоемких процессах ионного обмена. Снижается активность Са2+-АТФазы, нарушается активность электрогенного 3Na+/2К + насоса. Деполяризация клеточной мембраны ведет к открытию потенциал-зависимых натриевых и кальциевых каналов и увеличению притока ионов натрия и кальция в клетку. Внутриклеточный ацидоз вызывает активацию blа+/Н+ ионообменного механизма, что также способствует накоплению ионов натрия в клетке. Увеличение концентрации натрия в примембранном слое ведет к угнетению, а затем к инверсии работы 3Na+/Са2+ ионообменного механизма, следовательно, уменьшается отток Са2+ из клетки в обмен на входящие Na+. Также происходит снижение электрического потенциала мембраны митохондрий, что влечет за собой уменьшение, а затем и потерю способности митохондрий аккумулировать внутриклеточный кальций. Повышение концентрации ионов кальция в клетке вызывает активацию протеаз и фосфолипаз, что приводит к гидролизу фосфолипидов мембраны, нарушению их структуры и функции. В результате становятся более выраженными нарушения кальциевого обмена, ускоряются процессы накопления кальция в клетке. Образование такого порочного круга в итоге вызывает серьезные функциональные нарушения, а затем и гибель клетки. В дополнение к этому накопление Na+ и Са 2+ в клетке увеличивает осмолярность цитоплазмы, что влечет за собой приток воды в клетку и формирование гипоксического отека тканей. При гипоксии в различных тканях выявлено увеличение продукции оксида азота. Умеренная активация эндотелиальной и нейрональной NO-синтазы, видимо, имеет адаптивное значение: умеренная активация продукции NO сопровождается расширением прекапиллярных сосудов, снижением адгезии и агрегацией тромбоцитов, активацией синтеза стресс-белков, защищающих клетку от повреждений. Однако гиперпродукция оксида азота оказывает повреждающее действие, особенно на нервные клетки. К тому же гипоксия нервной ткани увеличивает секрецию глутамата, который оказывает не только возбуждающее медиаторное, но и цитотоксическое действие, вызывая гибель нейронов. Чувствительность различных тканей к недостатку кислорода неодинакова: в первую очередь при гипоксии страдает нервная система. Первоначальное эмоциональное и двигательное возбуждение (состояние эйфории) при длительной и глубокой гипоксии сменяется генерализованным торможением, адинамией; возникают грубые нарушения высшей нервной деятельности вплоть до потери сознания. Прогноз Прогноз зависит прежде всего от степени и длительности гипоксии, а также от тяжести поражения нервной системы. Умеренные структурные изменения клеток головного мозга обычно более или менее обратимы, при выраженных изменениях могут образоваться очаги размягчения мозга. У больных, перенёсших острую гипоксию I степени, астенические явления сохраняются обычно не более 1—2 недель. После выведения из Гипоксии II степени у некоторых больных общие судороги могут возникать в течение нескольких суток; в этот же период могут наблюдаться преходящие гиперкинезы, агнозия, корковая слепота, галлюцинации, приступы возбуждения и агрессивности, деменция. Выраженная астения и некоторые расстройства психики могут сохраняться иногда в течение года. У больных, перенёсших Гипоксию III степени, интеллектуально-мнестические нарушения, расстройства корковых функций, судорожные припадки, нарушения движений и чувствительности, симптомы поражения ствола мозга и спинальные нарушения могут обнаруживаться и в отдалённых периодах; длительно сохраняется психопатизация личности. Прогноз ухудшается при нарастающих явлениях отёка и поражения ствола мозга (паралитический мидриаз, плавающие движения глазных яблок, угнетение зрачковой реакции на свет, корнеальных рефлексов), продолжительном и глубоком коматозном состоянии, некупирующемся эпилептическом синдроме, при продолжительном угнетении биоэлектрической активности головного мозга. + смотри файл «Таблицы гипоксия» Влияние гипер- и гипокапнии на развитие гипоксии. Гипобарическая гипоксия развивается при снижении атмосферного давления. Наиболее часто она наблюдается во время высокогорных восхождений. Ведущим патогенетическим фактором ее возникновения также является гипоксемия, но в отличие от нормобарической гипоксии дополнительным отрицательным фактором служит гипокапния. Некоторые патологические состояния, сопровождающиеся гипервентиляцией, могут приводить к вымыванию СО2 из организма и развитию гипокапнии, способной влиять на активность дыхательного центра и усугублять тяжесть состояния пациента. Гипокапния сопровождается спазмом мозговых сосудов и снижением внутричерепного давления. При тяжелой и длительной гипокапнии может произойти ишемическое повреждение мозга. Гипокапния и газовый алкалоз формируются за счет хеморефлекторной, компенсаторной гипервентиляции легких, избыточного выведения СО2. Снижению парциального напряжения СО2 в крови легочных капилляров частично препятствует эффект Халдейна: снижение парциального давления О2 в альвеолярном воздухе уменьшает интенсивность выведения СО2. Однако более мощные контуры регуляции связаны с влиянием СО2 на дыхательный центр продолговатого мозга. Известно, что СО2 легко диффундирует через гематоэнцефалический барьер и, попадая в ликвор, образует угольную кислоту, которая диссоциирует на Н + и НСО3 -. Локальное содержание количества протонов воспринимается хеморецепторами вентральной поверхности продолговатого мозга и в конечном итоге влияет на деятельность дыхательного центра. Увеличение содержания СО2 в крови и соответственно снижение рН цереброспинальной жидкости стимулируют дыхание; гипокапния и уменьшение содержания протонов в цереброспинальной жидкости, напротив, угнетают дыхательный центр. В равнинных условиях снижение парциального напряжения СО2 в крови на 4—5 мм рт.ст. приводит к существенному уменьшению легочной вентиляции. Однако при гипоксемии резко повышается чувствительность дыхательного центра к рСО2 в крови, поэтому при подъеме в горы гипервентиляция сохраняется даже в случае значительного снижения содержания СО2 в крови. Гипокапния и увеличение рН крови, согласно закономерности, открытой Бором, повышают сродство гемоглобина к кислороду, причем кривая насыщения гемоглобина кислородом смещается влево. Этот эффект, с одной стороны, благоприятно сказывается на насыщении гемоглобина кислородом в легочных капиллярах, но с другой стороны, смещение кривой диссоциации оксигемоглобина влево ухудшает отдачу кислорода тканям при сравнительно низких значениях его парциального напряжения. Смещению кривой диссоциации оксигемоглобина влево при гипобарической гипоксии противостоит возрастание содержания 2,3-дифос-фоглицерата в эритроцитах, уменьшающего сродство гемоглобина к кислороду.
|
||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 1340; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.12.153.240 (0.008 с.) |