Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Геометрия червячной передачи.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Виды червячных передач. Качество и работоспособность червячной передачи зависят от формы, твердости, шероховатости и точности изготовления винтовой поверхности витка червяка. Различают линейчатые и нелинейчатые червяки в зависимости от того, могут или не могут винтовые поверхности витков червяка быть образованы прямой линией. Нарезание линейчатых винтовых поверхностей осуществляют на универсальных токарно-винторезных станках, когда прямолинейная кромка резца воспроизводит эвольвентную, конволютную или архимедову поверхность. Нелинейчатую винтовую поверхность получают дисковыми фрезами конусной или тороидальной формы. В соответствии с этим червячные передачи бывают с эвольвентными, архимедовыми, конволютными и нелинейчатыми червяками. Получение того или иного вида винтовой поверхности у витков червяка зависит от способа нарезания. Рисунок 49 – Геометрия эвольвентного червяка Эвольвентный червяк получают при установке прямолинейной кромки резца в плоскости, касательной к основному цилиндру с диаметром d (рис. 49). Левую и правую стороны витка нарезают соответственно резцами 1 и 2 (см. также сечения В–В и Б–Б). В торцовом сечении (сечении, перпендикулярном оси червяка) профиль витка червяка очерчен эвольвентой, в осевом сечении (А–А) – криволинейный (выпуклый). Эвольвентный червяк представляет собой цилиндрическое косозубое колесо эвольвентного профиля с числом зубьев, равным числу витков червяка, и с большим углом наклона зубьев. С целью получения высокой поверхностной твердости витков и повышения тем самым качественных показателей передачи применяют термическую обработку с последующим шлифованием рабочих поверхностей витков. Эвольвентные червяки могут быть с высокой точностью прошлифованы плоской поверхностью шлифовального круга. Производительные способы нарезания и простота шлифования обусловливают высокую технологичность эвольвентных червяков. Архимедов червяк получают при расположении режущих кромок резца в плоскости, проходящей через ось червяка. Архимедовы червяки имеют в осевом сечении прямолинейный профиль с углом 2α, равным профильному углу резца (рис. 50,а). В торцовом сечении профиль витка очерчен архимедовой спиралью. Боковые поверхности витков архимедовых червяков могут быть прошлифованы только специально профилированным по сложной кривой шлифовальным кругом. Поэтому упрочняющую термообработку и последующее шлифование не выполняют и применяют архимедовы червяки с низкой твердостью в тихоходных передачах с невысокими требованиями к нагрузочной способности и ресурсу.
Рисунок 50 – Архимедов червяк (а) и конволютный червяк (б) Конволютный червяк получают при установке режущих кромок резца в плоскости, касательной к цилиндру с диаметром dx (0< dx<db) и нормальной к оси симметрии впадины. В этой плоскости червяки имеют прямолинейный профиль впадины (рис. 50,б). Конволютные червяки имеют в осевом сечении выпуклый профиль, в торцовом сечении профиль витка очерчен удлиненной эвольвентой. Недостатком передач с конволютными червяками является сложная форма инструмента для шлифования червяков и невозможность получения точных фрез для нарезания зубьев червячных колес. Передачи с конволютными червяками так же, как и с архимедовыми, имеют ограниченное применение, в основном в условиях мелкосерийного производства. Нелинейчатые червяки нарезают дисковыми фрезами конусной или тороидальной формы. Витки таких червяков во всех сечениях имеют криволинейный профиль: в сечении, нормальном к оси симметрии впадины, выпуклый (рис. 51,а), в осевом сечении – вогнутый (рис. 51,б). Рабочие поверхности витков нелинейчатых червяков с высокой точностью шлифуют конусным или тороидным кругом. Передачи с нелинейчатыми червяками характеризует повышенная нагрузочная способность, их считают перспективными. Рисунок 51 – Нелинейчатые червяки Для силовых передач следует применять эвольвентные и нели нейчатые червяки. Геометрические размеры червяка и колеса определяют по формулам, аналогичным формулам для зубчатых колес. В червячной передаче расчетным является осевой модуль червяка т, равный торцовому модулю червячного колеса. Значения т, мм, выбирают из ряда:...4; 5; 6,3; 8.... Основными геометрическими размерами червяка являются (рис. 49): · делительный диаметр, т.е. диаметр такого цилиндра червяка, на котором толщина витка равна ширине впадины: , (86) где q – число модулей в делительном диаметре червяка или коэффициент диаметра червяка. С целью сокращения номенклатуры зуборезного инструмента значения q стандартизованы: 8; 10; 12,5; 16; 20; · расчетный шаг червяка: , (87) · ход витка: , (88) где z – число витков червяка: 1, 2 или 4 (z =3 стандартом не предусмотрено); · угол α профиля: для эвольвентных, архимедовых и конволютных червяков а = 20°; для червяков, образованных тором, α = 22°; · диаметр вершин витков: , (89) · диаметр впадин витков: , (90) · делительный угол подъема линии витка (см. рис. 52): , (91) · длина нарезанной части –b . Для червяка в передаче со смещением дополнительно вычисляют: · диаметр начального цилиндра (начальный диаметр): , (92) · угол подъема линии витка на начальном цилиндре: , (93) где х – коэффициент смещения. Рисунок 52 – Определение угла подъема винтовой линии Геометрические размеры венца червячного колеса. Зубья на червячном колесе чаще всего нарезают червячной фрезой, которая представляет собой копию червяка, с которым будет зацепляться червячное колесо. Только фреза имеет режущие кромки и несколько больший (на двойной размер радиального зазора в зацеплении) наружный диаметр. Основные геометрические размеры венца червячного колеса определяют в среднем его сечении. Делительный d2 и совпадающий с ним начальный dwi диаметр колеса при числе z 2 зубьев (рис. 53): , (94) Рисунок 53 – Геометрия червячного колеса Межосевое расстояние червячной передачи: , (95) Червячные передачи со смещением выполняют в целях обеспечения стандартного или заданного значения межосевого расстояния. Осуществляют это, как и в зубчатых передачах, смещением на (хт) фрезы относительно заготовки при нарезании зубьев колеса (рис. 53): , (96) Для стандартных редукторов aw:...80, 100, 125, 140, 160,.... Для нарезания зубьев колес в передачах со смещением и без смещения используют один и тот же инструмент. Поэтому нарезание со смещением выполняют только у колеса. При заданном межосевом расстоянии коэффициент смещения инструмента. Значения коэффициента х смещения инструмента выбирают по условию неподрезания и незаострения зубьев. Предпочтительны положительные смещения, при которых одновременно повышается прочность зубьев колеса. Рекомендуют для передач с червяком: – эвольвентным 0 ≤ х ≤ 1 (предпочтительно х = 0,5); – образованным тором 1,0 ≤ х ≤ 1,4 (предпочтительно x:= 1,1–1,2). Диаметр вершин зубьев (рис. 53): , (97) Диаметр впадин зубьев: , (98) Наибольший диаметр червячного колеса: , (99) где k = 2 для передач с эвольвентным червяком; k = 4 для передач, нелинейчатую поверхность которых образуют тором. Ширина венца червячного колеса зависит от числа витков червяка: при z =1 или 2, при z =4, (100) Червячное колесо является косозубым с углом у w наклона зуба. Условный угол 2δ обхвата для расчета на прочность находят по точкам пересечения окружности диаметром (dal – 0,5т) с линиями торцов венца червячного колеса. Кинематика передачи. Передаточное число и червячной передачи определяют по условию, что за каждый оборот червяка колесо поворачивается на угол, охватывающий число зубьев колеса, равное числу витков червяка. Полный оборот колесо совершает за z2 и оборотов червяка: , (101) где , п2 – частоты вращения червяка и колеса; d и d2 — делительные диаметры червяка и колеса; γ 1 – делительный угол подъема линии витка; и z2 – число витков червяка и число зубьев колеса. Во избежание подреза основания ножки зуба в процессе нарезания зубьев принимают z2 ≥ 26. Оптимальным является z2 =32...63. Для червячных передач стандартных редукторов передаточные числа выбирают из ряда:...31,5; 40; 50; 63; 80 Точность червячных передач. Для червячных передач установлены 12 степеней точности, для каждой из которых предусмотрены нормы кинематической точности, нормы плавности и нормы контакта зубьев и витков. В силовых передачах наибольшее применение имеют 7–я (vCK ≤ 10 м/с), 8–я (vCK ≤ 5 м/с) и 9–я (vCK ≤ 2 м/с) степени точности. КПД червячной передачи. Роль смазывания в червячной передаче еще важнее, чем в зубчатой, так как в зацеплении происходит скольжение витков червяка вдоль контактных линий зубьев червячного колеса. КПД червячного зацепления определяют по формуле: , (102) где γ w – угол подъема винтовой линии; φ' – приведенный угол трения; f'= tgφ' – приведенный коэффициент трения (коэффициент трения, найденный с учетом угла а профиля витка). Значения угла φ' трения в зависимости от скорости скольжения получают экспериментально для червячных передач на опорах с подшипниками качения, т.е. в этих значениях учтены потери мощности в подшипниках качения, в зубчатом зацеплении и на размешивание и разбрызгивание масла. Величина φ' снижается при увеличении vCK, так как при больших скоростях скольжения в зоне контакта создаются благоприятные условия для образования масляного слоя, разделяющего витки червяка и зубья колеса и уменьшающего потери в зацеплении. Численное значение увеличивается с ростом угла γ w подъема на начальном цилиндре до γ w 40° (рис. 57). Обычно в червячных передачах γw ≤ 27°. Большие углы подъема выполнимы в передачах с четырех–заходным червяком и с малыми передаточными числами. Рисунок 57 – График зависимости КПД от угла γ w Червячные передачи имеют сравнительно низкий КПД, что ограничивает область их применения ( = 0,75...0,92). Силы в зацеплении. Силу взаимодействия червяка и колеса принимают сосредоточенной и приложенной в полюсе зацепления по нормали к рабочей поверхности витка. Ее задают тремя взаимно перпендикулярными составляющими: Ft Fa, Fr. Для наглядности изображения сил червяк и червячное колесо на рис. 58, а условно выведены из зацепления. Окружная сила Ft2 на червячном колесе: , (103) где Т2 – вращающий момент на червячном колесе, Н·м; d2 – делительный диаметр колеса, мм. Осевая сила Fal на червяке численно равна Ft2: , (104) Окружная сила Ft1 на червяке: , (105) где – вращающий момент на червяке, Н·м; – КПД, dw1 – в мм. Осевая сила Fa2 на червячном колесе численно равна Ft1: , (106) Радиальная сила Fr1 на червяке (радиальная сила Fr2 на колесе численно равна Fr1), рис. 58,б: , (107) Направление силы Ft2 всегда совпадает с направлением вращения колеса, а сила Ftl направлена в сторону, противоположную вращению червяка. Рисунок 58 – Силы, действующие в червячном зацеплении
|
||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 3064; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.17.175.191 (0.007 с.) |