Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Иерархическая организация памятиСодержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
Компромиссом между производительностью и объемами памяти является решение использовать иерархию запоминающих устройств, то есть применять иерархическую модель памяти. Применение иерархических систем памяти оправдывает себя вследствие двух важных факторов - принципа локальности обращений и низкого (экономически выгодного) соотношения стоимость/производительность. Принцип локальности обращений состоит в том, что большинство программ обычно не выполняют обращений ко всем своим командам и данным равновероятно, а в каждый момент времени оказывают предпочтение некоторой части своего адресного пространства. Иерархия памяти обычно состоит из многих уровней, но в каждый момент времени взаимодействуют только два близлежащих уровня. Минимальная единица информации, которая может присутствовать либо отсутствовать в двухуровневой иерархии, называется блоком или строкой. Успешное или не успешное обращение к более высокому уровню называют соответственно попаданием (hit) или промахом (miss). Попадание - есть обращение к объекту в памяти, который найден на более высоком уровне, в то время как промах означает, что он не найден на этом уровне. Доля попаданий (hit rаtе) - доля обращений к данным, найденным на более высоком уровне. Доля промахов (miss rate) - это доля обращений к данным, которые не найдены на более высоком уровне. Время обращения при попадании (hit time) есть время обращения к более высокому уровню иерархии, которое включает в себя, в частности, и время, необходимое для определения того, является ли обращение попаданием или промахом. Потери на промах (miss реnаltу) есть время для замещения блока в более высоком уровне на блок из более низкого уровня плюс время для пересылки этого блока в требуемое устройство (обычно в процессор). Потери на промах далее включают в себя два компонента: § время доступа (access time) - время обращения к первому слову блока при промахе; § время пересылки (transfer time) - дополнительное время для пересылки оставшихся слов блока. Время доступа связано с задержкой памяти более низкого уровня, а время пересылки - с полосой пропускания канала между устройствами памяти двух смежных уровней. Кэш-память Кэш-память или cache memory - компонент иерархической памяти - представляет собой буферное ЗУ, работающее со скоростью, обеспечивающей функционирование центрального процессора без режимов ожидания. Необходимость создания кэш памяти возникла потому, что появились процессоры с высоким быстродействием. Между тем для выполнения сложных прикладных процессов нужна большая память. Использование же большой сверхскоростной памяти экономически невыгодно. Поэтому между ОП и процессором стали устанавливать меньшую по размерам высокоскоростную буферную память, или кэш-память. В дальнейшем она была разделена на два уровня - встроенная в процессор (on-die) и внешняя (on-motherboard). Иерархия оперативной памяти Стратегии управления иерархической памятью При построении систем с иерархической памятью целью является получение максимальной производительности подсистемы памяти при ее минимальной стоимости. Эффективность той или иной системы кэш-памяти зависит от стратегии управления памятью. Стратегия управления памятью включает: метод отображения основной памяти в кэше; алгоритм взаимодействия между медленной основной и быстрой кэш-памятью; стратегии замещения информации в кэше. Отображение памяти на кэш Существует три основных способа размещения блоков (строк) основной памяти в кэше: § кэш-память с прямым отображением (direct-mapped cache); § полностью ассоциативная кэш-память (fully associative cache). § частично ассоциативная (или множественно ассоциативная, partial associative, set-associative cache) кэш-память; Память с прямым отображением. В этом случае каждый блок основной памяти имеет только одно фиксированное место, на котором он может появиться в кэш-памяти. Все блоки основной памяти, имеющие одинаковые младшие разряды в своем адресе, попадают в один блок кэш-памяти. При таком подходе справедливо соотношение: (Адрес блока кэш-памяти) = (Адрес блока основной памяти) mod (Число блоков в кэш-памяти). Этот тип памяти наиболее прост, но и наименее эффективен, так как данные из разных областей памяти могут конфликтовать из-за единственной строки кэша, где они только и могут быть размещены. Полностью ассоциативная память Может отображать содержимое любой области памяти в любую область кэша, но при этом крайне сложна в схемотехнике. Частично-ассоциативный кэш Является наиболее распространенным в данный момент среди процессорных архитектур. Характеризуется тем или иным количеством n «каналов» (степенью ассоциативности, «п-way») и может отображать содержимое данной строки памяти на каждую из n своих строк. Этот вариант является разумным компромиссом между полностью ассоциативным и кэшем «прямого отображения». В современных процессорах, как правило, используется либо кэш-память с прямым отображением, либо двух- (четырех-) канальная множественно ассоциативная кэш-память. Например, в архитектурах К7 и К8 применяется 16-канальный частично-ассоциативный кэш L2. Стратегия замещения информации в кэше определяет блок, подлежащий замещению при возникновении промаха. Простота при использовании кэша с прямым отображением заключается в том, что аппаратные решения здесь наиболее простые: легко реализуется сама аппаратура, легко происходит замещение данных. При замещении просто нечего выбирать - на попадание проверяется только один блок и только этот блок может быть замещен. При полностью или частично ассоциативной организации кэш-памяти имеются несколько блоков, из которых надо выбрать кандидата в случае промаха. Как правило, для замещения блоков применяются две основные стратегии: § случайная (Random) - блоки-кандидаты выбираются случайно (равномерное распределение). В некоторых системах используют псевдослучайный алгоритм замещения; § замещается тот блок, который не использовался дольше всех (LRU - Least-Recently Used). В этом случае чтобы уменьшить вероятность удаления информации, которая скоро может потребоваться, все обращения к блокам фиксируются. Достоинство случайного способа заключается в том, что его проще реализовать в аппаратуре. Когда количество блоков увеличивается, алгоритм LRU становится все более дорогим и часто только приближенным. Алгоритмы обмена с кэш-памятью (свопинга) включают следующие разновидности: § алгоритм сквозной записи (Write Through) или сквозного накопления (Store Through); § алгоритм простого свопинга (Simple Swapping) или обратной записи (Write Back); § алгоритм свопинга с флагами (Flag Swapping) или обратной записи в конфликтных ситуациях с флагами (CUX); § алгоритм регистрового свопинга с флагами (FRS). Алгоритм сквозной записи Самый простой алгоритм свопинга. Каждый раз при появлении запроса на запись по некоторому адресу обновляется содержимое области по этому адресу как в быстрой, так и в основной памяти, даже если копия содержимого по этому адресу находится в быстром буфере. Такое постоянное обновление содержимого основной памяти, как и буфера, при каждом запросе на запись позволяет постоянно поддерживать информацию, находящуюся в основной памяти, в обновленном состоянии. Поэтому, когда возникает запрос на запись по адресу, относящемуся к области, содержимое которой не находится в данный момент в быстром буфере, новая информация записывается просто на место блока, которое предполагается переслать в основную память (без необходимости пересылки этого слова в основную память), так как в основной памяти уже находится его достоверная копия. Алгоритм простого свопинга Обращения к основной памяти имеют место в тех случаях, когда в быстром буфере не обнаруживается нужное слово. Эта схема свопинга повышает производительность системы памяти, так как в ней обращения к основной памяти не происходят при каждом запросе на запись, что имеет место при использовании алгоритма сквозной записи. Однако в связи с тем, что содержимое основной памяти не поддерживается в постоянно обновленном состоянии, если необходимого слова в быстром буфере не обнаруживается, из буфера в основную память надо возвратить какое-либо устаревшее слово, чтобы освободить место для нового необходимого слова. Поэтому из буфера в основную память сначала пересылается какое-то слово, место которого занимает в буфере нужное слово. Таким образом, происходят две пересылки между быстрым буфером и основной памятью. Алгоритм свопинга с флагами Данный алгоритм является улучшением алгоритма простого свопинга. В алгоритме простого свопинга, когда в кэш-памяти не обнаруживается нужное слово, происходит два обращения к основной памяти - запись удаляемого значения из кэша и чтение нового значения в кэш. Если слово с того момента, как оно попало в буфер из основной памяти, не подвергалось изменениям, то есть по его адресу не производилась запись (оно использовалось только для чтения), то нет необходимости пересылать его обратно в основную память, потому что в ней и так имеется достоверная его копия; это обстоятельство позволяет в ряде случаев обойтись без обращений к основной памяти. Если, однако, слово подвергалось изменениям с тех пор, когда его копия была в последний раз записана обратно в основную память, то приходится перемещать его в основную память. Отслеживать изменения слова можно, пометив слово (блок) дополнительным флаг-битом. Изменяя значение флаг-бита при изменении слова, можно сформировать информацию о состоянии слова. Пересылать в основную память необходимо лишь те слова, флаги которых оказываются в установленном состоянии.
|
||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 2033; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.21.246.53 (0.009 с.) |