Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Методология выбора процессора

Поиск

Как показано ранее, правильный выбор DSP сильно зависит от приложения: процессор может хорошо подходить для одних приложений, но абсолютно не подходить для других. При выборе процессора нужно определить самые важные в конкретном случае характеристики и расставить их по степени важности. Затем в соответствии с этими критериями отобрать возможных кандидатов и, наконец, выбрать из подходящих лучший, обращая внимание на дополнительные, не критичные характеристики. При этом целесообразно воспользоваться оценкой характеристик процессоров, производимой какой-либо авторитетной компанией (например, BTDI). Следует помнить, что BTDI производит оценку DSP не только по быстродействию, но и по другим критериям: эффективности памяти, энергопотреблению и т.д.

Например, для реализации приложения для нас в первую очередь важны скорость, цена, эффективность работы памяти и энергопотребление. Мы определили основных претендентов, среди которых DSP с ядром C64x и C64x+ от Texas Instruments и TigerSHARC от Analog Devices. На рисунке 2 показан граф сравнительных характеристик этих процессоров по критериям скорости, стоимости, энергопотребления и удобству средств разработки.


Рис. 59 – Диаграмма для выбора DSP

 

Теперь приоритеты. Если в первую очередь необходима высокая скорость и низкая цена, выбирается Texas Instruments. Если конструируется мобильное устройство и нам нужно низкое энергопотребление, причем мы готовы пожертвовать скоростью, берем Analog Devices. Не исключена вероятность того, что выбранные процессоры окажутся очень близки по ключевым параметрам. В этом случае выбор будет определяться некритичными характеристиками: доступностью средств отладки, предыдущим опытом разработчика, доступностью компонентов и т.д.


Модуль Заключительный

 

Перспективы развития микропроцессорной техники.

Ассоциативные процессоры

Существующие в настоящее время алгоритмы прикладных задач, системное программное обеспечение и аппаратные средства преимущественно ориентированы на традиционную адресную обработку данных. Данные должны быть представлены в виде ограниченного количества форматов (например, массивы, списки, записи), должна быть явно создана структура связей между элементами данных посредством указателей на адреса элементов памяти, при обработке этих данных должна быть выполнена совокупность операций, обеспечивающих доступ к данным по указателям. Такой подход обуславливает громоздкость операционных систем и систем программирования, а также служит препятствием к созданию вычислительных средств с архитектурой, ориентированной на более эффективное использование параллелизма обработки данных.

Ассоциативный способ обработки данных позволяет преодолеть многие ограничения, присущие адресному доступу к памяти, за счет задания некоторого критерия отбора и проведение требуемых преобразований, только над теми данными, которые удовлетворяют этому критерию. Критерием отбора может быть совпадение с любым элементом данных, достаточным для выделения искомых данных из всех данных. Поиск данных может происходить по фрагменту, имеющему большую или меньшую корреляцию с заданным элементом данных.

Исследованы и в разной степени используются несколько подходов, различающихся полнотой реализации модели ассоциативной обработки. Если реализуется только ассоциативная выборка данных с последующим поочередным использованием найденных данных, то говорят об ассоциативной памяти или памяти, адресуемой по содержимому. При достаточно полной реализации всех свойств ассоциативной обработки, используется термин «ассоциативный процессор».

Ассоциативные системы относятся к классу: один поток команд - множество потоков данных (SIMD = Single Instruction Multiple Data). Эти системы включают большое число операционных устройств, способных одновременно по командам управляющего устройства вести обработку нескольких потоков данных. В ассоциативных вычислительных системах информация на обработку поступает от ассоциативных запоминающих устройств (АЗУ), характеризующиеся тем, что информация в них выбирается не по определенному адресу, а по ее содержанию.

ДНК процессоры

В настоящее время в поисках реальной альтернативы полу-проводниковым технологиям создания новых вычислительных систем ученые обращают все большее внимание на биотехнологии, или биокомпьютинг, который представляет собой гибрид информационных, молекулярных технологий, также биохимии. Биокомпьютинг позволяет решать сложные вычислительные задачи, пользуясь методами, принятыми в биохимии и молекулярной биологии, организуя вычисления при помощи живых тканей, клеток, вирусов и биомолекул.

Наибольшее распространение получил подход, где в качестве основного элемента (процессора) используются молекулы де-зоксирибонуклеиновой кислоты. Центральное место в этом подходе занимает так называемый ДНК-процессор. Кроме ДНК в качестве био-процессора могут быть использованы также белковые молекулы и биологические мембраны.

Так же, как и любой другой процессор, ДНК процессор характеризуется структурой и набором команд. В нашем случае структура процессора - это структура молекулы ДНК. А набор команд - это перечень биохимических операций с молекулой. Принцип устройства компьютерной ДНК-памяти основан на последовательном соединении четырех нуклеотидов (основных кирпичиков ДНК-цепи). Три нуклеотида, соединяясь в любой последовательности, образуют элементарную ячейку памяти - кодон, которые затем формируют цепь ДНК. Основная трудность в разработке ДНК-компьютеров связана с проведением избирательных однокодонных реакций (взаимодействий) внутри цепи ДНК. Однако прогресс есть уже и в этом направлении. Уже есть экспериментальное оборудование, позволяющее работать с одним из 1020 кодонов или молекул ДНК. Другой проблемой является самосборка ДНК, приводящая к потере информации. Ее преодолевают введением в клетку специальных ингибиторов - веществ, предотвращающих химическую реакцию самосшивки.

Использование молекул DNA для организации вычислений – это не слишком новая идея. Теоретическое обоснование подобной возможности было сделано еще в 50-х годах прошлого века (Р.П. Фейманом). В деталях эта теория была проработана в 70-х годах Ч. Бенеттом и в 80-х М. Конрадом. Первый компьютер на базе ДНК был создан еще в 1994 г. американским ученым Леонардом Адлеманом. Он смешал в пробирке молекулу ДНК, в которой были закодированы исходные данные, и специальным образом подобранные ферменты. В результате химической реакции структура ДНК изменилась таким образом, что в ней в закодированном виде был представлен ответ задачи. Поскольку вычисления проводились в ходе химической реакции с участием ферментов, на них было затрачено очень мало времени. Ричард Липтон из Принстона первым показал, как, используя ДНК, кодировать двоичные числа и решать проблему удовлетворения логического выражения. Суть ее в том, что, имея некоторое логическое выражение, включающее n логических переменных, нужно найти все комбинации значений переменных, делающих выражение истинным. Задачу можно решить только перебором 2n комбинаций. Все эти комбинации легко закодировать с помощью ДНК, а дальше действовать по методике Адлемана.

Первую модель биокомпьютера, правда, в виде механизма из пластмассы, в 1999 г. создал Ихуд Шапиро из Вейцмановского института естественных наук. Она имитировала работу “молекулярной машины” в живой клетке, собирающей белковые молекулы по информации с ДНК, используя РНК в качестве посредника между ДНК и белком.
А в 2001 г. Шапиро удалось реализовать вычислительное устройство на основе ДНК, которое может работать почти без вмешательства человека. Система имитирует машину Тьюринга — одну из фундаментальных концепций вычислительной техники. Машина Тьюринга шаг за шагом считывает данные и в зависимости от их значений принимает решения о дальнейших действиях. Теоретически она может решить любую вычислительную задачу. По своей природе молекулы ДНК работают аналогичным образом, распадаясь и рекомбинируя в соответствии с информацией, закодированной в цепочках химических соединений.

Разработанная в Вейцмановском институте установка кодирует входные данные и программы в состоящих из двух цепей молекулах ДНК и смешивает их с двумя ферментами. Молекулы фермента выполняли роль аппаратного, а молекулы ДНК - программного обеспечения. Один фермент расщепляет молекулу ДНК с входными данными на отрезки разной длины в зависимости от содержащегося в ней кода. А другой рекомбинирует эти отрезки в соответствии с их кодом и кодом молекулы ДНК с программой. Процесс продолжается вдоль входной цепи, и, когда доходит до конца, получается выходная молекула, соответствующая конечному состоянию системы. Этот механизм может использоваться для решения самых разных задач. Хотя на уровне отдельных молекул обработка ДНК происходит медленно - с типичной скоростью от 500 до 1000 бит/с, что во много миллионов раз медленнее современных кремниевых процессоров, по своей природе она допускает массовый параллелизм. По оценкам Шапиро и его коллег, в одной пробирке может одновременно происходить триллион процессов, так что при потребляемой мощности в единицы нановатт может выполняться миллиард операций в секунду.

В 2002 г. фирма Olympus Optical разработала версию ДНК-компьютера, предназначенного для генетического анализа. Он имеет молекулярную и электронную составляющие. Первая осуществляет химические реакции между молекулами ДНК, обеспечивает поиск и выделение результата вычислений. Вторая - обрабатывает информацию и анализирует полученные результаты. Возможностями биокомпьютеров заинтересовались и военные. Американское агентство по исследованиям в области обороны DARPA выполняет проект, получивший название Bio-Comp (Biological Computations, биологические вычисления). Его цель - создание мощных вычислительных систем на основе ДНК.

Пока до практического применения компьютеров на базе ДНК еще очень далеко. Однако в будущем их смогут использовать не только для вычислений, но и как своеобразные нанофабрики лекарств. Поместив подобное "устройство" в клетку, врачи смогут влиять на ее состояние, исцеляя человека от самых опасных недугов.

Клеточные процессоры

Клеточные процессоры представляют собой самоорганизующиеся колонии различных "умных" микроорганизмов, в геном которых удалось включить некую логическую схему, которая могла бы активизироваться в присутствии определенного вещества. Такие компьютеры очень дешевы в производстве. Им не нужна столь стерильная атмосфера, как при производстве полупроводников.

Главным свойством процессора такого рода является то, что каждая их клетка представляет собой миниатюрную химическую лабораторию. Если биоорганизм запрограммирован, то он просто производит нужные вещества. Достаточно вырастить одну клетку, обладающую заданными качествами, и можно легко и быстро вырастить тысячи клеток с такой же программой. Основная проблема, с которой сталкиваются создатели клеточных биокомпьютеров – организация всех клеток в единую работающую систему. На сегодняшний день практические достижения в области клеточных компьютеров напоминают достижения 20-х годов в области ламповых и полупроводниковых компьютеров. В Лаборатории искусственного интеллекта Массачусетского технологического университета создана клетка, способная хранить на генетическом уровне 1 бит информации. Также разрабатываются технологии, позволяющие единичной бактерии отыскивать своих соседей, образовывать с ними упорядоченную структуру и осуществлять массив параллельных операций.

В 2001 г. американские ученые создали трансгенные мик-роорганизмы (т. е. микроорганизмы с искусственно измененными генами), клетки которых могут выполнять логические операции И и ИЛИ.
Специалисты лаборатории Оук-Ридж, штат Теннесси, использовали способность генов синтезировать тот или иной белок под воздействием определенной группы химических раздражителей. Ученые изменили генетический код бактерий Pseudomonas putida таким образом, что их клетки обрели способность выполнять простые логические операции. Например, при выполнении операции И в клетку подаются два вещества (по сути - входные операнды), под влиянием которых ген вырабатывает определенный белок. Теперь учеными ведутся работы по созданию на базе этих клеток более сложных логических элементов, а также работы по созданию клетки, выполняющей параллельно несколько логических операций.
Потенциал биокомпьютеров очень велик. К достоинствам, выгодно отличающим их от компьютеров, основанных на кремниевых технологиях, относятся:

1) более простая технология изготовления, не требующая для своей реализации столь жестких условий, как при производстве полупроводников

2) использование не бинарного, а тернарного кода (информация кодируется тройками нуклеотидов), что позволит при меньшем количестве шагов перебрать большее число вариантов при анализе сложных систем

3) потенциально исключительно высокая производительность, которая может составлять до 1014 операций в секунду за счет одновременного вступления в реакцию триллионов молекул ДНК

4) возможность хранить данные с плотностью, в триллионы раз превышающей показатели оптических дисков

5) исключительно низкое энергопотребление

Однако, наряду с очевидными достоинствами, биокомпьютеры имеют и существенные недостатки, такие как:

1) сложность со считыванием результатов - современные способы определения кодирующей последовательности не совершенны, сложны, трудоемки и дороги

2) низкая точность вычислений, связанная с возникновением мутаций, прилипанием молекул к стенкам сосудов и т.д.

3) невозможность длительного хранения результатов вычислений в связи с распадом ДНК в течение времени

Хотя до практического использования биокомпьютеров еще очень далеко, но предполагается, что, они найдут достойное применение в медицине и фармакологии, а также с их помощью станет возможным объединение информационных и биотехнологий.

Коммуникационные процессоры

Коммуникационные процессоры - это микрочипы, являющие собой нечто среднее между жесткими специализированными интегральными микросхемами и гибкими процессорами общего назначения.
Коммуникационные процессоры программируются, как и обычные процессоры, но построены с учетом сетевых задач, оптимизированы для сетевой работы, и на их основе производители - как процессоров, так и оборудования - пишут программное обеспечение для специфических приложений.
Коммуникационный процессор имеет собственную память и оснащен высокоскоростными внешними каналами для соединения с другими процессорными узлами. Его присутствие позволяет в значительной мере освободить вычислительный процессор от нагрузки, связанной с передачей сообщений между процессорными узлами. Скоростной коммуникационный процессор с RISC-ядром позволяет управлять обменом данными по нескольким независимым каналам, поддерживать практически все распространенные протоколы обмена, гибко и эффективно распределять и обрабатывать последовательные потоки данных с временным разделением каналов. Сама идея создания процессоров, предназначенных для оптимизации сетевой работы, и при этом достаточно универсальных для программной модификации – родилась в связи с необходимостью устранить различия в подходах к созданию локальных сетей (различные подходы к архитектуре сети, классификации потоков, и т.д.)

Новая серия коммуникационных процессоров Intel IXP4xx построена на базе распределенной архитектуры XScale и включает мощные мультимедийные возможности, а также развитые сетевые интерфейсы Ethernet. Сочетание высокой производительности и низкого энергопотребления позволяет эффективно применять коммуникационные процессоры Intel не только в классических сетевых приложениях, но и для построения интернет - ориентированных встраиваемых систем промышленного назначения.
Эффективность работы промышленных предприятий сегодня напрямую зависит от гибкости применяемых систем автоматизированного управления. Крупные производственные установки требуют использования нескольких децентрализованных систем управления, связанных друг с другом мощной информационной сетью, способной работать в сложных промышленных условиях. Зачастую эти средства промышленной коммуникации призваны обеспечить возможность гибкого управления, программирования и контроля работы распределенных систем управления из удаленных диспетчерских пунктов. Осуществление этих целей возможно с помощью коммуникационных процессоров, предназначенных для подключения персональных компьютеров к промышленным информационным сетям. Дополнительные возможности, обеспечиваемые коммуникационными процессорами должны быть интересны, прежде всего, тем пользователям, которым необходимо осуществлять сложные транзакции или наладить прямую голосовую и видео передачи в рамках сетевой инфраструктуры.



Поделиться:


Последнее изменение этой страницы: 2016-08-12; просмотров: 259; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.221.248.140 (0.009 с.)