Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Момент инерции твердого тела

Поиск
  Рассмотрим твердое тело, которое может вращаться относительно некоторой оси (рис.). Момент импульса i-й точки тела относительно этой оси определяется формулой: . (1.84)

Выражая линейную скорость точки через угловую скорость тела и используя свойства векторного произведения, получим

(1.85)

Спроектируем момент импульса на ось вращения: — эта проекция определяет момент относительно этой оси. Получим

. (1.86)

где zi,- координата i —точки вдоль оси Z, a Ri, — расстояние точки от оси вращения. Суммируя по всем частицам тела, получим момент импульса всего тела относительно оси вращения:

. (1.87)

Величина

(1.88)

является моментом инерции тела относительно оси вращения. Момент импульса тела относительно данной оси вращения принимает, таким образом, вид:

Mz = J ·ω. (1.89)

Полученная формула аналогична формуле Pz = mVz для поступательного движения. Роль массы играет момент инерции, роль линейной скорости — угловая скорость. Подставив выражение (1.89) в уравнение для момента импульса (1.78), получим

J ·β z = Nz. (1.90)

где βz. — проекция на ось вращения углового ускорения . Это уравнение эквивалентно по форме второму закону Ньютона.

В общем случае несимметричного тела вектор M не совпадает по направлению с осью вращения тела и поворачивается вокруг этой ocи вместе с телом, описывая конус. Из соображений симметрии ясно что для однородного тела, симметричного относительно оси вращения, момент импульса относительно точки, лежащей на оси вращения, совпадает с направлением оси вращения. В этом случае имеет место соотношение:

. (1.91)

Из выражения (1.91) следует, что при равенстве нулю момента внешних сил произведение остается постоянным = const и изменение момента инерции влечет за собой соответствующее изменение угловой скорости вращения тела. Этим объясняется известное явление, состоящее в том, что человек, стоящий на вертящейся скамье, разводя руки в стороны либо прижимая их к туловищу, изменяет частоту вращения.

Из полученных выше выражений ясно, что момент инерции является такой же характеристикой свойства инерции макроскопического тела в отношении вращательного движения, как инертная масса материальной точки в отношении поступательного движения. Из выражения (1.88) следует, что момент инерции вычисляется путем суммирования по всем частицам тела. В случае непрерывного распределения массы тела по его объему естественно перейти от суммирования к интегрированию, вводя плотность тела. Если тело однородно, то плотность определяется отношением массы к объему тела:

. (1.92)

Для тела с неравномерно распределенной массой плотность тела в некоторой точке определяется производной

. (1.93)

Момент инерции представим в виде:

, (1.94)

где D V — микроскопический объем, занимаемый точечной массой.

Поскольку твердое тело состоит из большого числа частиц, практически непрерывно заполняющих весь занимаемый телом объем, в выражении (1.94) микроскопический объем можно считать бесконечно малым, в то же время полагая, что точечная масса «размазана» по этому объему. Фактически мы производим сейчас переход от модели точечного распределения масс к модели сплошной среды, какой в действительности и является твердое тело благодаря большой его плотности. Произведенный переход позволяет в формуле (2.94) заменить суммирование по отдельным частицам интегрированием по всему объему тела:

. (1.95)

 

Здесь величины ρ и r являются функциями точки, например, ее декартовых координат.

 

Формула (1.95) позволяет вычислять моменты инерции тел любой формы. Вычислим в качестве примера момент инерции однородно­го диска относительно оси, перпендикулярной к плоскости диска и проходящей через его центр (рис.).

Поскольку диск однороден, плотность можно вынести из-под знака интеграла. Элемент объема диска dV = 2πr· b · dr, где b — толщина диска. Таким образом,

, (1.96)

где R — радиус диска. Введя массу диска, равную произведению плотности на объем диска π· R2 b, получим:

. (1.97)

Нахождение момента инерции диска в рассмотренном примере облегчалось тем, что тело было однородным и симметричным, а момент инерции вычислялся относительно оси симметрии тела. В общем случае вращения тела произвольной формы вокруг произвольной оси, вычисление момента инерции может быть произведено с помощью теоремы Штейнера: момент инерции относительно произвольной оси равен сумме момента инерции J0 относительно оси, параллельной данной и проходящей через центр инерции тела, и произведения массы тела на квадрат расстояния между осями:

J = J0 + ma2. (1.98)

Например, момент инерции диска относительно оси О' в соответствии с теоремой Штейнера:

(1.99)

 



Поделиться:


Последнее изменение этой страницы: 2016-08-12; просмотров: 275; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.0.127 (0.01 с.)