Теплообмен при непосредственном контакте теплоносителей 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Теплообмен при непосредственном контакте теплоносителей

Поиск

 

Этот случай в промышленной технологии встречается реже,
чем теплопередача через разделяющую стенку. Однако, в ряде случаев (охлаждение воды воздухом, в аппаратах с зернистым слоем и др.) такой вид теплообмена значительно проще организовать. При этом различают теплопередачу при непосредственном контакте в системах газ – жидкость, газ (жидкость) – твердое тело.

I. Система газ – жидкость. Теплообмен сопровождается процессами переноса массы из одной фазы в другую. Если жидкость охлаждается,
то происходит испарение части жидкости и распространение ее в газовом потоке.

Испарение – переход вещества из жидкого состояния в газообразное, при температуре меньшей, чем температура кипения жидкости при заданном давлении.

В непосредственной близости к поверхности жидкости газовая фаза насыщена паром с парциальным давлением p п меньшим давления насыщенного пара p нп, поэтому возникает поток вещества из жидкости
в газовую фазу. В процессе испарения жидкость охлаждается, потому что источником энергии является сама жидкость. Потоки теплоты из жидкой фазы в газовую вследствие испарения (адиабатическое испарение) за счет конвекции равны

 

. (69)

 

Здесь a – коэффициент теплоотдачи; T т– температура газа; T м.т – температура мокрого термометра (низшая температура жидкости, испаряющейся
и движущейся над ней парогазовой смеси).

Основное сопротивление в системе газ – жидкость сосредоточено
в газовой фазе.

Примеры из химической технологии: скрубберы и градирни.

Теплообмен при непосредственном контакте газа (жидкости) с твердым зернистым материалом подразделяют в зависимости от состояния слоя этого материала: он может быть неподвижным, движущимся и псевдоожиженным.

II. Система твердые частицы (неподвижные) – газ. Процесс теплообмена состоит из переноса теплоты из сплошной фазы теплоносителя к поверхности частиц материала (внешняя теплоотдача) и переноса теплоты внутри частиц.

Теплоотдача при движении теплоносителя через неподвижный слой зернистого материала зависит от:

- размера и формы частиц;

- пористости слоя;

- физических свойств теплоносителя и др.

Предложен ряд зависимостей для определения коэффициента теплоотдачи

 

. (70)

 

Здесь A, n 1, n 2 экспериментальные данные, при разных значениях Re м они разные (Re м – модифицированный критерий Рейнольдса).

Расчет переноса теплоты внутри твердой частицы существенно сложнее. Соотношение между внешним и внутренним теплопереносом характеризуется критерием Био

, (71)

Здесь a – коэффициент теплоотдачи внешний фазы; l – характерный линейный (размер для шара l = R); l3 – теплопроводность твердого материала.

При малых значениях Bi – основное сопротивление во внешней фазе; при больших значениях Bi - основное сопротивление внутри твердой фазы.

Для первого случая расчет теплообмена можно проводить по формуле (70). Для второго – материалы в специальной литературе [3].

Теплопередача в движущемся слое зернистого материала. Основное отличие движущегося плотного слоя от неподвижного – это увеличение его порозности, особенно у стенок аппарата.

Лимитирующей стадией теплопереноса в движущемся слое является внешняя теплоотдача. Коэффициент теплоотдачи внешней фазы ниже,
чем в случае неподвижного слоя.

Теплообмен в псевдоожиженном слое. Благодаря большой поверхности твердых частиц теплообмен в псевдоожиженном слое протекает очень интенсивно. Расчет затруднен из-за невозможности определения истинной поверхности и действительной разности температур между твердыми частицами и газом (жидкостью).

Обработка опытных данных критериальная: например, для переноса тепла от среды к частице предлагается зависимость

 

, (72)

 

где 0,4 < e < 0,8.

В аппарате с псевдоожиженным слоем идет интенсивный теплообмен между слоем и стенкой. С увеличением скорости потока среды a увеличивается и достигает amax, затем начинает уменьшаться. Обычно максимальное значение a достигается при скорости сплошной фазы, превышающей примерно в 2 раза скорости начала псевдоожижения.

 



Поделиться:


Последнее изменение этой страницы: 2016-07-16; просмотров: 578; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.176.238 (0.009 с.)