![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Тепловой баланс теплообменного аппарата и частные случаи.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
где Q – мощность теплообменного аппарата, Вт;
где cpm1 и cpm2 – средние теплоемкости горячего и холодного теплоносителей; W1=G1cpm1 и W2=G2cpm2 – водяные эквиваленты горячего и холодного теплоносителей;
В зависимости от постановки задачи тепловой расчет теплообменных аппаратов может быть конструктивным (расчеты первого рода) или поверочными (расчеты второго рода). При конструкторском тепловом расчете известны: скорость, плотность и температура теплоносителей на входе и на выходе из теплообменного аппарата, а также расходы теплоносителей. Определяют тепловую мощность и площади поверхности теплообменного аппарата, с дальнейшим конструированием нового или выбором стандартного аппарата. Поверочный тепловой расчет выполняется в том случае, когда поверхность теплообмена и размеры теплообменного аппарата известны, а необходимо определить мощность теплообменного аппарата и температуры теплоносителей на выходе из теплообменника. При этом задаются температуры теплоносителей на входе в теплообменник и расходы теплоносителей. В основу теплового расчета рекуперативных ТА положены: уравнение теплового баланса
и обобщенное уравнение теплопередачи при переменных температурах
где η – коэффициент, учитывающий тепловые потери в окружающую среду, η = 0,95 – 0,98; Уравнения (238), (239) справедливы для всех типов рекуперативных ТА любого назначения [конвективные ТА (нагреватели, холодильники), испарители, конденсаторы и кристаллизаторы], но при этом тепловые потоки ( Коэффициент теплопередачи от горячего к холодному теплоносителю в рекуперативных ТА определяется по соотношению [2, 3]
где На первом этапе конструктивного теплового расчета ТА коэффициенты теплоотдачи от горячего теплоносителя к стенке и от стенки к холодному теплоносителю ( Конструируемый или выбираемый стандартный теплообменный аппарат способен обеспечить заданные температурные режимы теплоносителей, если его индекс противоточности
Минимальный индекс противоточности ТА определяется только температуратурными режимами теплоносителей и находится по соотношению [1, 5]
где
Действительная средняя разность температур между теплоносителями для рекуперативных ТА всех типов определяется по соотношению
где eD t – коэффициент, учитывающий различие между действительной средней разностью температур (Q m) и средней логарифмической разностью температур между теплоносителями при противоточной схеме движения теплоносителей (Q mL). Cредняя логарифмическая разностью температур между теплоносителями для противоточной схемы их движения рассчитывается по уравнению Грасгофа [2, 5]
В одноходовых теплообменных аппаратах может осуществляться либо прямоточная, либо противоточная схема движения теплоносителей. Для прямоточной схемы индекс противоточности равен p = 0, а при противотоке – p = 1. Для более сложных схем определение индекса противоточности p выбранного теплообменного аппарата начинается с расчета характеристик, от которых, наряду со схемой движения теплоносителя, зависит значение индекса [2, 8, 9]
По значениям этих характеристик с учетом схемы движения теплоносителей (число ходов по трубному и межтрубному пространству) из графиков определяется коэффициент eD t (рис. 3, 4, 5) [2, 3, 8, 9]. После определения действительной средней разности температур между теплоносителями характеристическая разность температур DT находится с использованием метода последовательного приближения из следующего соотношения:
где Q ma – средняя арифметическая разность температур между теплоносителями в теплообменном аппарате,
Рис. 26. Зависимость εΔ t от характеристик R и PS для двухходовых (по трубному пространству) кожухотрубных теплообменных аппаратов Рис. 27. Зависимость εΔ t от характеристик R и PS для четырехходовых (по трубному пространству) кожухотрубных теплообменных аппаратов Рис. 28. Зависимость εΔ t от характеристик R и PS для шестиходовых (по трубному пространству) кожухотрубных теплообменных аппаратов Значение индекса противоточности для сконструированного или выбранной стандартного теплообменного аппарата при заданных температурных режимах и водяных эквивалентах теплоносителей определяется по уравнению Н.И. Белоконя для характеристической разности температур [1, 3]
Действительная тепловая мощность сконструированного или выбранного стандартного теплообменного аппарата рассчитывается по формуле Н.И. Белоконя [1, 5]
где Wm – приведенный водяной эквивалент теплоносителей,
FТА – площадь поверхности теплообмена теплообменного аппарата. Действительные характеристики теплоносителей на выходе из теплообменного аппарата (
|
|||||
Последнее изменение этой страницы: 2016-08-26; просмотров: 916; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.97.9.168 (0.008 с.) |