Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Теплоемкость идеального газаСодержание книги
Поиск на нашем сайте Из опыта следует, что внутренняя энергия идеального газа зависит только от температуры. Отсутствие зависимости Теплоемкостью какого-либо тела называют величину, равную количеству тепла, которое нужно сообщить телу, чтобы повысить его температуру на 1К. Если сообщение телу тепла Теплоемкость единицы массы вещества называют удельной теплоемкостью:
Внутренняя энергия и теплоемкость идеальных газов В идеальном газе молекулы не взаимодействуют между собой, внутренняя энергия одного моля газа: Uм = NA<ε> = i/2 NAkT = i/2 RT. Uм = i/2RT. Если вспомнить, что по определению: Cv = δQ/dT = dU/dT, поскольку, δQ = dU+pdV, а для изохорного процесса dV = 0. Тогда Cv = (i/2) R, а, учитывая, что Cр = Cv+R, получим: Cр = (i+2)/2 R Следовательно, коэффициент Пуассона γ = Cp/Cv = (i+2)/i, таким образом, γ определяется числом и характером степеней свободы молекулы. Согласно этой ф-лы для одноатомной молекулы i = 3 и γ = 1,67; жесткой двухатомной i =5 и γ = 1,4; упругой двухатомной i = 7, а γ = 1,29. В области температур, близких к комнатной, это хорошо согласуется с опытом. Однако, в широком температурном интервале это не так. Оказывается, что вращательная и колебательная энергии молекулы квантованы. При низких Т вращательные и колебательные степени свободы не возбуждены. Молекула Н2 , например, ведет себя как одноатомная в этой области температур, i = 3. В области Т ≈ 500К вращательные степени «разморожены» <ε> > εвращ и молекула Н2 ведет себя как жесткая двухатомная с = 3+2 = 5. При Т>1000К энергии <ε> достаточно для возбуждения колебательной степени свободы, «включены» все степени свободы, i = 7.
Б-17 1. Потенциальная энергия частицы в поле. То обстоятельство, что работа консервативной силы (для стационарного поля) зависит только от начального и конечного положений частицы в поле, позволяет ввести важное физическое понятие потенциальной энергии (функции состояния). Возьмем стационарное поле консервативных сил, например электростатическое поле в котором мы перемещаем частицу (заряд) из разных точек
(*).
Это значит, что данная работа будет некоторой функцией радиус-вектора
Правая часть представляет убыль потенциальной энергии, т.е. разность начальную и конечную значений потенциальной энергии. ( Однако, как только зафиксирована потенциальная энергия в одной, какой-либо точке, значения её во всех остальных точках поля определяется однозначно выражением (**). Эта формула позволяет найти вид
Отметим еще раз, что потенциальная энергия определяется с точностью до некоторой постоянной величины, что несущественно, т.к. во всех формулах входит разность её значения в двух положениях частицы, поэтому постоянная выпадает, и её опускают. Кроме этого важно заметить, что потенциальную энергию следует относить не к частице в поле а к системе взаимодействующих частиц и тела, создающего поле. При данном характере взаимодействия потенциальная энергия зависит только от положения частицы относительно этого тела. 2. Опыт Майкельсона и Морли. Опыт Майкельсона — физический опыт, поставленный Майкельсоном в 1881 году, с целью измерения зависимости скорости света от движения Земли относительно эфира. Под эфиром тогда понималась среда, аналогичная объёмнораспределённой материи, в которой распространяется свет подобно звуковым колебаниям. Результат эксперимента был отрицательный — скорость света никак не зависела от скорости движения Земли и от направления измеряемой скорости. Позже, в 1887 году Майкельсон, совместно с Морли, провёл аналогичный, но более точный эксперимент, известный как эксперимент Майкельсона-Морли и показавший тот же результат. В 1958 году в Колумбийском университете (США) был проведён ещё более точный эксперимент с использованием противонаправленных лучей двух мазеров, показавший неизменность частоты от движения Земли с точностью около 10−9 % (чувствительность к скорости движения Земли относительно эфира составляла 30 м/с). Ещё более точные измерения в 1974 довели чувствительность до 0,025 м/с. Современные варианты эксперимента Майкельсона [1] используют оптические и криогенные микроволновые резонаторы и позволяют обнаружить отклонение скорости света, если бы оно составляло несколько единиц на 10−16. Опыт Майкельсона является эмпирической основой принципа инвариантности скорости света, входящего в общую теорию относительности (ОТО) и специальную теорию относительности (СТО). 3. Барометрическая формула. Атмосфера, то есть воздушная оболочка Земли, обязана своим существованиям наличию теплового движения молекул и силы притяжения их к Земле. При этом в атмосфере устанавливается вполне определенное распределение молекул по высоте. Соответственно этому, устанавливается определенный закон изменения давления воздуха с высотой, который нетрудно найти. Возьмем вертикальный столб воздуха. Считаем, что при х=0, y поверхности Земли р=р0, а на высоте х давление равно р. При увеличении высоты на dx давление уменьшается на dp. Известно, что давление воздуха на некоторой высоте равно весу вертикального столба воздуха с площадью равной единице, находящегося над этой высотой. Поэтому, dp равно разности весов столбов воздуха с площадью s=1 м2 на высотах x и x+dx, то есть, равно весу столба воздуха высотой dx с площадью основания 1 м2: p-dp-p= -dp= ρgdx ×1 м2, значит, dp= -ρgdx, плотность ρ= m0N/V= m0n, (m0N = m – масса всех молекул). Из молекулярной физики известно, p= nkT => n= p/kT => ρ= m0 p/kT и тогда, подставляя значение плотности, получим: dp= (-m0g/kT)pdx. После разделения переменных: dp/p= (-m0g/kT)dx Считая для простоты температуру постоянной на всех высотах (что не так) после интегрирования найдем: lnp= (-m0g/kT)x +lnC, откуда: p= Ce(-m0g/kT)x. Постоянную C находим из начальных условий: при х= 0 р= р0, то есть р0=C и тогда: р= р0e(-m0g/kT)x или с учетом m0= M/NA: р= р0e(-Mg/RT)x - барометрическая формула, т.е., давление с высотой убывает по экспоненциальному закону. Для градуировки барометров необходимо внести поправки на Т. Так как, давление пропорционально концентрации молекул в единице объема, то: n= n0 e(-mg/kT)x - закон убывания концентрации молекул, а значит, плотности с высотой. Видно, что атмосфера Земли в принципе, простирается до ∞. На больших высотах необходимо учесть, что g – меняется с высотой: g(r)= γM/(r+x)2 .
Б-18 1. Связь между потенциальной энергией и силой для консервативного поля. Взаимодействие частицы с окружающими телами можно описать либо с помощью сил либо с помощью потенциальной энергией. Первый способ более общий, т.к. он применим и к силам, для которых нельзя ввести понятие потенциальной энергии (силы трения). Второй способ удобен тем, что существует связь между потенциальной энергией и силой со стороны поля. Зная эту связь, можно по виду зависимости Найдем эту связь. Известно, что работа консервативных сил при перемещении частицы из одной точки статического поля в другую может быть представлена в виде убыли потенциальной энергии частицы
2. Постулаты Эйнштейна. Специальная теория относительности (СТО) (англ. special theory of relativity; частная тео́рия относи́тельности; релятивистская механика) — теория, описывающая движение, законы механики и пространственно-временные отношения, определяющие их, при скоростях движения, близких к скорости света. В рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей. Обобщение СТО для гравитационных полей образует общую теорию относительности. Отклонения в протекании физических процессов, описываемые теорией относительности, от эффектов, предсказываемых классической механикой, называют релятивистскими эффектами, скорости, при которых такие эффекты становятся существенными — релятивистскими скоростями. Пусть система отсчёта K' движется со скоростью V относительно системы отсчёта K0, соответственно, штрихованные величины относятся к K', а величины с индексом 0 — к K0. К наиболее распространённым эффектам СТО, также называемым релятивистскими эффектами, относят: Замедление времени Время в движущейся системе отсчёта течёт медленнее:
С этим эффектом связан так называемый парадокс близнецов.
|
||||
|
Последнее изменение этой страницы: 2016-08-01; просмотров: 387; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.108 (0.007 с.) |