ТОП 10:

Теплоемкость идеального газа



Из опыта следует, что внутренняя энергия идеального газа зависит только от температуры. Отсутствие зависимости от объема газа указывает на то, что молекулы идеального газа не взаимодействуют друг с другом, иначе бы во внутреннюю энергию входило слагаемое, зависящее от расстояния между молекулами, т.е., от . Значит, подавляющую часть времени молекулы проводят в свободном полете.

Теплоемкостью какого-либо тела называют величину, равную количеству тепла, которое нужно сообщить телу, чтобы повысить его температуру на 1К. Если сообщение телу тепла повышает его температуру на , то теплоемкость тела по определению: .

Теплоемкость единицы массы вещества называют удельной теплоемкостью:

, тогда, молярная теплоемкость: , а теплоемкость тела: .

Внутренняя энергия и теплоемкость идеальных газов

В идеальном газе молекулы не взаимодействуют между собой, внутренняя энергия одного моля газа:

Uм = NA<ε> = i/2 NAkT = i/2 RT . Uм = i/2RT.

Если вспомнить, что по определению: Cv = δQ/dT = dU/dT, поскольку, δQ = dU+pdV, а для изохорного процесса dV = 0.

Тогда Cv = (i/2) R , а, учитывая, что Cр = Cv+R, получим:

Cр = (i+2)/2 R

Следовательно, коэффициент Пуассона γ = Cp/Cv = (i+2)/i , таким образом, γ определяется числом и характером степеней свободы молекулы.

Согласно этой ф-лы для одноатомной молекулы i = 3 и γ = 1,67; жесткой двухатомной i =5 и γ = 1,4; упругой двухатомной i = 7, а γ = 1,29. В области температур, близких к комнатной, это хорошо согласуется с опытом. Однако, в широком температурном интервале это не так. Оказывается, что вращательная и колебательная энергии молекулы квантованы. При низких Т вращательные и колебательные степени свободы не возбуждены. Молекула Н2 , например, ведет себя как одноатомная в этой области температур, i = 3. В области Т ≈ 500К вращательные степени «разморожены» <ε> > εвращ и молекула Н2 ведет себя как жесткая двухатомная с = 3+2 = 5. При Т>1000К энергии <ε> достаточно для возбуждения колебательной степени свободы, «включены» все степени свободы, i = 7.

 

Б-17

1. Потенциальная энергия частицы в поле.

То обстоятельство, что работа консервативной силы (для стационарного поля) зависит только от начального и конечного положений частицы в поле, позволяет ввести важное физическое понятие потенциальной энергии (функции состояния). Возьмем стационарное поле консервативных сил, например электростатическое поле в котором мы перемещаем частицу (заряд) из разных точек в некоторой фиксированной точке О (точка отсчета). Найдем работу сил поля. Поскольку работа сил поля не зависит от пути, то остаётся зависимость её только от положения т. (О— фиксировано) т.е. от предела интегрирования

(*).

Это значит, что данная работа будет некоторой функцией радиус-вектора точки . Функцию называют потенциальной энергией частицы в поле сил. Теперь найдем работу при перемещении частицы из т.1 в т.2. Т.к. она не зависит от формы пути: то или с учетом (*)

;

;

(**)

Правая часть представляет убыль потенциальной энергии, т.е. разность начальную и конечную значений потенциальной энергии. ( — приращение); ( — убыль). Т.о. работа сил Оля на пути 1—2 равна убыли потенциальной энергии. Так как работа сил поля определяется лишь разностью энергий в двух точек, а не их абсолютного значения, то частица в т.О можно приписать любое, наперед выбранное значение потенциальной энергии.

Однако, как только зафиксирована потенциальная энергия в одной, какой-либо точке, значения её во всех остальных точках поля определяется однозначно выражением (**). Эта формула позволяет найти вид для любого стационарного поля консервативных сил. Для этого достаточно вычислить работу совершаемую силами поля между двумя любыми точками и представить её в виде убыли некоторой функции , которая и есть потенциальной энергией. Так и было ране сделано при вычислении работы гравитационной, упругой и силы тяжести. Отсюда видно, что потенциальная энергия частицы в данных полях имеет вид

— гравитационная, кулоновская +С – постоянная.

— упругой +С

— в поле тяжести.

Отметим еще раз, что потенциальная энергия определяется с точностью до некоторой постоянной величины, что несущественно, т.к. во всех формулах входит разность её значения в двух положениях частицы, поэтому постоянная выпадает, и её опускают. Кроме этого важно заметить, что потенциальную энергию следует относить не к частице в поле а к системе взаимодействующих частиц и тела, создающего поле. При данном характере взаимодействия потенциальная энергия зависит только от положения частицы относительно этого тела.

2. Опыт Майкельсона и Морли.

Опыт Майкельсона — физический опыт, поставленный Майкельсоном в 1881 году, с целью измерения зависимости скорости света от движения Земли относительно эфира. Под эфиром тогда понималась среда, аналогичная объёмнораспределённой материи, в которой распространяется свет подобно звуковым колебаниям. Результат эксперимента был отрицательный — скорость света никак не зависела от скорости движения Земли и от направления измеряемой скорости. Позже, в 1887 году Майкельсон, совместно с Морли, провёл аналогичный, но более точный эксперимент, известный как эксперимент Майкельсона-Морли и показавший тот же результат. В 1958 году в Колумбийском университете (США) был проведён ещё более точный эксперимент с использованием противонаправленных лучей двух мазеров, показавший неизменность частоты от движения Земли с точностью около 10−9 % (чувствительность к скорости движения Земли относительно эфира составляла 30 м/с). Ещё более точные измерения в 1974 довели чувствительность до 0,025 м/с. Современные варианты эксперимента Майкельсона [1] используют оптические и криогенные микроволновые резонаторы и позволяют обнаружить отклонение скорости света, если бы оно составляло несколько единиц на 10−16.

Опыт Майкельсона является эмпирической основой принципа инвариантности скорости света, входящего в общую теорию относительности (ОТО) и специальную теорию относительности (СТО).

3. Барометрическая формула.

Атмосфера, то есть воздушная оболочка Земли, обязана своим существованиям наличию теплового движения молекул и силы притяжения их к Земле. При этом в атмосфере устанавливается вполне определенное распределение молекул по высоте. Соответственно этому, устанавливается определенный закон изменения давления воздуха с высотой, который нетрудно найти.

Возьмем вертикальный столб воздуха. Считаем, что при х=0, y поверхности Земли р=р0 , а на высоте х давление равно р. При увеличении высоты на dx давление уменьшается на dp. Известно, что давление воздуха на некоторой высоте равно весу вертикального столба воздуха с площадью равной единице, находящегося над этой высотой. Поэтому, dp равно разности весов столбов воздуха с площадью s=1 м2 на высотах x и x+dx, то есть, равно весу столба воздуха высотой dx с площадью основания 1 м2:

p-dp-p= -dp= ρgdx ×1 м2, значит, dp= -ρgdx, плотность ρ= m0N/V= m0n, (m0N = m – масса всех молекул).

Из молекулярной физики известно, p= nkT => n= p/kT => ρ= m0 p/kT

и тогда, подставляя значение плотности, получим: dp= (-m0g/kT)pdx. После разделения переменных: dp/p= (-m0g/kT)dx

Считая для простоты температуру постоянной на всех высотах (что не так) после интегрирования найдем:

lnp= (-m0g/kT)x +lnC , откуда: p= Ce(-m0g/kT)x . Постоянную C находим из начальных

условий: при х= 0 р= р0, то есть р0=C и тогда:

р= р0e(-m0g/kT)x

или с учетом m0= M/NA : р= р0e(-Mg/RT)x - барометрическая формула, т.е., давление с высотой убывает по экспоненциальному закону.

Для градуировки барометров необходимо внести поправки на Т. Так как, давление пропорционально концентрации молекул в единице объема, то: n= n0 e(-mg/kT)x - закон убывания концентрации молекул, а значит, плотности с высотой.

Видно, что атмосфера Земли в принципе, простирается до ∞. На больших высотах необходимо учесть, что g – меняется с высотой: g(r)= γM/(r+x)2 .

 

Б-18

1. Связь между потенциальной энергией и силой для консервативного поля.

Взаимодействие частицы с окружающими телами можно описать либо с помощью сил либо с помощью потенциальной энергией. Первый способ более общий , т.к. он применим и к силам, для которых нельзя ввести понятие потенциальной энергии (силы трения). Второй способ удобен тем, что существует связь между потенциальной энергией и силой со стороны поля. Зная эту связь, можно по виду зависимости — функции положения частицы в поле, находить поле сил .

Найдем эту связь. Известно, что работа консервативных сил при перемещении частицы из одной точки статического поля в другую может быть представлена в виде убыли потенциальной энергии частицы . Это можно записать и для элементарного перемещения .

т.к. ; — элементарный путь или ; — убыль потенциальной энергии в направлении перемещения ; отсюда: т.е. проекция силы поля в данной точке на направление перемещения равна убыли потенциальной энергии в этом направлении. Символ указывает, что произведение берется по определенному направлению. Перемещение можно брать в любом направлении, например вдоль осей . Если вдоль то ; а , — проекция силы на орт (а не на перемещение , как в случае ). Т.о. относительно оси можно записать . Символ означает, что при дифференцировании должна расти как функция одного аргумента , а остальные аргументы — . Значит ; . Зная проекции можно найти и сам вектор или . Скобка называется градиент скалярной функции , и обозначается или т.о. — символический вектор или оператор Гамильтона. — формально можно рассматривать как произведение символического вектора на скаляр т.е. сила действующая со стороны поля на частицу равна со знаком минус градиент потенциальной энергии частицы в данной тоске поля. Т.о. зная можно найти .

2. Постулаты Эйнштейна.

Специальная теория относительности (СТО) (англ. special theory of relativity; частная тео́рия относи́тельности; релятивистская механика) — теория, описывающая движение, законы механики и пространственно-временные отношения, определяющие их, при скоростях движения, близких к скорости света. В рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей. Обобщение СТО для гравитационных полей образует общую теорию относительности.

Отклонения в протекании физических процессов, описываемые теорией относительности, от эффектов, предсказываемых классической механикой, называют релятивистскими эффектами, скорости, при которых такие эффекты становятся существенными — релятивистскими скоростями.

Пусть система отсчёта K' движется со скоростью V относительно системы отсчёта K0, соответственно, штрихованные величины относятся к K', а величины с индексом 0 — к K0. К наиболее распространённым эффектам СТО, также называемым релятивистскими эффектами, относят:

Замедление времени

Время в движущейся системе отсчёта течёт медленнее:

С этим эффектом связан так называемый парадокс близнецов.







Последнее изменение этой страницы: 2016-08-01; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.232.51.69 (0.009 с.)