Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Рефлекторные функции спинного мозгаСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Функциональное разнообразие нейронов спинного мозга, наличие в нем афферентных нейронов, интернейронов, мотонейронов и нейронов автономной нервной системы, а также многочисленных прямых и обратных, сегментарных, межсегментарных связей и связей со структурами головного мозга — все это создает условия для рефлекторной деятельности спинного мозга с участием как собственных структур, так и головного мозга. Подобная организация позволяет реализовывать все двигательные рефлексы тела, диафрагмы, мочеполовой системы и прямой кишки, терморегуляции, сосудистые рефлексы и т. д. Рефлекторные реакции спинного мозга зависят от места, силы раздражения, площади раздражаемой рефлексогенной зоны, скорости проведения по афферентным и эфферентным волокнам и, наконец, от влияния головного мозга. Сила и длительность рефлексов спинного мозга увеличивается при повторении раздражения (суммация). Собственная рефлекторная деятельность спинного мозга осуществляется сегментарными рефлекторными дугами. Сегментарная рефлекторная дуга состоит из рецептивного поля, из которого импульсация по чувствительному волокну нейрона спинального ганглия, а затем по аксону этого же нейрона через задний корешок входит в спинной мозг, далее аксон может идти прямо к мотонейрону переднего рога, аксон которого подходит к мышце. Так образуется моносинаптическая рефлекторная дуга, которая имеет один синапс между афферентным нейроном спинального ганглия и мотонейроном переднего рога. Эти рефлекторные дуги образуются в таких рефлексах, которые возникают только при раздражении рецепторов аннулоспиральных окончаний мышечных веретен. Другие спинальные рефлексы реализуются с участием интернейронов заднего рога или промежуточной области спинного мозга. В итоге возникают полисинаптические рефлекторные дуги. Рассмотрим некоторые рефлексы спинного мозга Миотатические рефлексы — рефлексы на растяжение мышцы. Быстрое растяжение мышцы, всего на несколько миллиметров механическим ударом по ее сухожилию приводит к сокращению всей мышцы и двигательной реакции. Например, легкий удар по сухожилию надколенной чашечки вызывает сокращение мышц бедра и разгибание голени. Дуга этого рефлекса следующая: мышечные рецепторы четырехглавой мышцы бедра à спинальный ганглий à задние корешки à задние рога III поясничного сегмента à мотонейроны передних рогов того же сегмента à экстрафузальные волокна четырехглавой мышцы бедра. Реализация этого рефлекса была бы невозможна, если бы одновременно с сокращением мышц-разгибателей не расслаблялись мышцы-сгибатели. Рефлекс на растяжение свойствен всем мышцам, но у мышц-разгибателей, они хорошо выражены и легко вызываются. Рефлексы с рецепторов кожи носят характер, зависящий от силы раздражения, вида раздражаемого рецептора, но чаще всего конечная реакция выглядит в виде усиления сокращения мышц-сгибателей. Висцеромоторные рефлексы возникают при стимуляции афферентных нервов внутренних органов и характеризуются появлением двигательных реакций мышц грудной клетки и брюшной стенки, мышц разгибателей спины. Рефлексы автономной нервной системы имеют свои пути. Они начинаются от различных рецепторов, входят в спинной мозг через задние корешки, задние рога, далее в боковые рога, нейроны которых через передний корешок посылают аксоны не непосредственно к органам, а к ганглию симпатического или парасимпатического отдела автономной нервной системы. Автономные (вегетативные) рефлексы обеспечивают реакцию внутренних органов, сосудистой системы на раздражение висцеральных, мышечных, кожных рецепторов. Эти рефлексы отличаются большим латентным периодом (ЛП) двумя фазами реакции: первая — ранняя — возникает с ЛП 7—9 мс и реализуется ограниченным числом сегментов, вторая — поздняя — возникает с большим ЛП — до 21 мс и вовлекает в реакцию практически все сегменты спинного мозга. Поздний компонент вегетативного рефлекса обусловлен вовлечением в него вегетативных центров головного мозга. Сложной формой рефлекторной деятельности спинного мозга является рефлекс, реализующий произвольное движение. В основе реализации произвольного движения лежит γ-афферентная рефлекторная система. В нее входят пирамидная кора, экстрапирамидная система, α- и γ-мотонейроны спинного мозга, экстра- и интрафузальные волокна мышечного веретена. При травмах у человека в ряде случаев происходит полное или половинное пересечение спинного мозга. При половинном латеральном повреждении спинного мозга развивается синдром Броун-Секара. Он проявляется в том, что на стороне поражения спинного мозга (ниже места поражения) развивается паралич двигательной системы вследствие повреждения пирамидных путей. На противоположной поражению стороне движения сохраняются. На стороне поражения (ниже места поражения) нарушается проприоцептивная чувствительность. Это обусловлено тем, что восходящие пути глубокой чувствительности идут по своей стороне спинного мозга до продолговатого мозга, где происходит их перекрест. На противоположной стороне туловища (относительно повреждения спинного мозга) нарушается болевая чувствительность, так как проводящие пути болевой чувствительности кожи идут от спинального ганглия в задний рог спинного мозга, где переключаются на новый нейрон, аксон которого переходит на противоположную сторону. В итоге если повреждена левая половина спинного мозга, то исчезает болевая чувствительность правой половины туловища ниже повреждения. Полную перерезку спинного мозга в экспериментах на животных производят для исследования влияния вышележащих отделов ЦНС на нижележащие. После полного пересечения спинного мозга возникает спинальный шок. Это явление заключается в том, что все центры ниже перерезки перестают организовывать присущие им рефлексы. Нарушение рефлекторной деятельности после пересечения спинного мозга у разных животных длится разное время. У лягушек оно исчисляется десятками секунд, у кролика рефлексы восстанавливаются через 10—15 мин, у собак отдельные рефлексы, например, мышечного сокращения, восстанавливаются через несколько часов, другие — через несколько дней (рефлексы регуляции артериального давления), через недели восстанавливаются рефлексы мочеиспускания. У обезьян первые признаки восстановления рефлексов после перерезки спинного мозга появляются через несколько суток; у человека первые спинальные рефлексы восстанавливаются через несколько недель, а то и месяцев. Следовательно, чем сложнее организация ЦНС у животного, тем сильнее контроль вышележащих отделов мозга над нижележащими. То, что причиной шока является нарушение супраспинальных влияний, доказывается повторной перерезкой спинного мозга ниже места первой перерезки. В этом случае спинальный шок не возникает, рефлекторная деятельность спинного мозга сохраняется. По истечении длительного периода времени после шока спинальные рефлексы резко усиливаются, что объясняется устранением тормозного влияния ретикулярной формации ствола мозга на рефлексы спинного мозга.
27.Функциональная организация базальных ганглиев. Базальные ганглии представляют собой сложно организованный комплекс разнородных по происхождению ядер, которые образуют цепи модулирующих переключений. Как и мозжечок, они не имеют непосредственного эфферентного выхода к спинному мозгу и, так же как он, не могут напрямую контролировать движения. В отличие от мозжечка, они не получают непосредственную информацию от различных рецепторов, но используют сигналы, поступающие от многочисленных областей коры. Их эфферентная связь направлена через таламус к префронтальной, вторичной и первичной моторной коре: базальные ганглии модулируют активность этих двигательных центров. К системе базальных ганглиев относят пять пар функционально объединённых ядер: 1. хвостатое ядро. 2. скорлупу, происходящую, как и хвостатое ядро из переднего мозга и образованную такими же, как и оно, клетками. 3. бледный, происходящий из диэнцефальной (промежуточной) части мозга и разделяющийся на внутренний и внешний сегменты; 4. субталамическое ядро, находящееся книзу от таламуса на границе со средним мозгом; 5. чёрная субстанция, расположенная в среднем мозгу и состоящая из двух частей: вентральной, бледной на вид и по составу клеток сходной с бледным шаром, и дорсальной - сильно пигментированной. Все афферентные связи базальных ганглиев приходятся на полосатое тело. В нём оканчиваются многочисленные глутаматэргические волокна, берущие своё начало от нейронов сенсомоторных и ассоциативных областей коры, планирующих движение и создающих двигательные программы. Источником для другой группы сигналов, поступающих к полосатому телу, служит таламус. Ещё один важный афферентный путь начинается в дорсальной части чёрной субстанции: её дофаминэргические нейроны оказывают тормозное действие на полосатое тело, в котором количество дофаминэргических синапсов на единицу объёма больше, чем в любой другой области мозга. Связи базальных ганглиев с корой организованы соматотопически, разные круги переключения предусматривают отдельную обработку информации для движений ног, рук, глаз, а также комплексов действий, необходимых для когнитивных форм поведения. Так, например, кортикоспинальный путь, начинающийся от первичной и вторичной моторной, соматосенсорной коры и префронтальной области снабжает моторную часть скорлупы многочисленными и хорошо топографически организованными входами, при этом большая часть волокон поступает к базальным ганглиям от добавочного моторного ареала и премоторной области. К моторным областям проецируется через таламус и выходная активность базальных ганглиев, что позволяет им участвовать в управлении важнейшими нисходящими моторными путями. Активность некоторых нейронов базальных ганглиев похожа на деятельность клеток моторной коры: отдельные нейроны активируются только при изменении положения конкретного сустава в определённом направлении. В то же время не обнаруживается связи между их активностью и силой сокращения отдельных мышц. Электрическая активность базальных ганглиев регистрируется непосредственно перед началом произвольных движений контрлатеральных конечностей. По-видимому, базальные ганглии участвуют в переработке информации, необходимой для планирования и начальной стадии произвольных движений, а также в формировании необходимой для выполнения движения позы. Наличие в составе базальных ганглиев возбуждающих и тормозных нейронов позволяет сбалансировать их выходную активность таким образом, чтобы обеспечить нужную плавность движений. Считают, что базальные ганглии облегчают одни и угнетают другие движения подобно тому, как в сенсорных системах к разным последствиям приводит стимуляция центральной части рецептивного поля и его периферии. Возможно, что такая деятельность базальных ганглиев относится к чередованию тонических и фазных компонентов движения, т.е. формированию позы, требующейся для совершения конкретного движения, а затем и самого движения. Сопоставление функций мозжечка и базальных ганглиев в управлении движением позволяет найти несколько различий между ними. Во-первых, мозжечок получает входы и от сенсомоторной коры, и от периферии, а базальные ганглии только от коры, но не от одних лишь моторных областей, а и от ассоциативных. Во-вторых, мозжечок посылает эфферентные сигналы только к первичной и вторичной моторной коре, а базальные ганглии, наряду с этими областями, имеют выход к префронтальной ассоциативной коре. В третьих, мозжечок получает информацию непосредственно от спинного мозга, а его обширные связи с двигательными ядрами ствола позволяют ему оперативно вмешиваться в управление уже совершающихся движений. У базальных ганглиев мало контактов со стволом и есть лишь непрямые связи со спинным мозгом. Эти параллели позволяют констатировать возможность управления ходом движений у мозжечка, а у базальных ганглиев - участие в стратегических аспектах движения, связанных с их планированием и инициацией.
|
||||
Последнее изменение этой страницы: 2016-07-11; просмотров: 481; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.210.35 (0.01 с.) |