Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Показатели центра распределения.Содержание книги
Поиск на нашем сайте
Д/обобщающей ха-ки значения признака в вариационном ряду исп-ся среднее арифметическое, мода, медиана. Д/дискретного ряда распределение среднего рассчит-ся: Х =∑х/n; X =∑xf/∑ f Д/интервального ряда: Х = ∑хцf/∑f, где Хц – середина интервала. Мода и медиана являются описательными средними; они ха-ют ве-ну варианта, занимающую определённое значение в ранжированном вариационном ряду. Мода – наиболее часто встречающаяся ве-на признака в данной совокупности. Если встречается 2 моды → бимодальное распределение. Д/интервального ряда с равными интервалами мода определяется по формуле: , где ХM0 начальное значение интервала, содержащего моду; i - величина интервала; FM…- частоты интервалов модального, предшествующего модальному и следующего за модальным. Медиана -значение признака, стоящего в середине ранжированного ряда: Nme = (n+1)/2 = (f+1)/2; где n,f число единиц. Д/интервального вар.ряда с равными интервалами медиана определяется по формуле: , где - начальное значение интервала, содержащего медиану; i – величина равного интервала; - сумма накопленных частот интервала, предшествующего медианному; -частота медианного интервала; ∑f =n – число единиц Моду и медиану можно определить графически??????? Мода применяется при планировании массового выпуска одежды и обуви, при изучении товарооборота рынка, наиболее распространённых размеров зарплаты и т.п. Медиана применяется при экспертных оценках, при контроле качества продукции В симметричных рядах мода и медиана равноправны т.к. Х= моде (Мо) = медиане(Ме). Д/ассиметрических рядов лучше Ме, т.к. она находится между Х и Мо.
ПОКАЗАТЕЛИ ВАРИАЦИИ. Размах вариации: Хmax – Xmin; зависит только от крайних значений, поэтому применим только д/достаточно однородной совокупности; нужны показатели, учитывающие колеблемость всех значений признака. Среднее линейное отклонение – среднее арифметическое из абсолютных значений отклонений всех значений признака от средней (d): d = ∑|x- x| /n; d = ∑|x- x| f /∑f Дисперсия (σ2): σ2= ∑(x- x) 2/n; σ2= ∑(x- x)2f/∑f; д/альтернативного ряда: σ2= р(1-р)=р*q, где р – доля единиц, обладающих определённым признаком, q - доля единиц, не обладающих определённым признаком. Среднее квадратичное (= стандартное отклонение) (σ): σ = корень из ∑(x-x)2/n; σ =корень из ∑(x- x)2f/∑f; д/умеренно ассиметричного распределения: σ=1,25d, d=0,8σ Среднее линейное и квадратичное отклонения – ве-ны именованные, но даже если они равны между собой, а средние арифм-ие различны, то д/каждой совокупности они имеют различное значение. Поэтому отдельно рассчитывается коэффициент вариации: 1) коэффициент осцилляции: V=(R/ x)*100%; коэффициент линейного отклонения: V=(d/ x)*100%; коэффициент вариации: V=(σ/ x)*100%. Коэффициент вариации исп-ся не только д/сравнительной оценки вариации, но и д/ха-ки однородности совокупности. Если он меньше 33%, то совокупность однородна и её можно ха-ть средней ве-ной. Если совокупность неоднородна, но нужно рассчитывать показатель вариации. Показатель вариации является мерой надёжности средней. Чем меньше d, σ2, V тем однороднее изучаемая совокупность и надёжнее полученное среднее. Согласно правилу 3ёх σ (сигм), в нормально распределённых или близких к ним рядах распределения отклонение не превосходит 3 σ встреч в 997 случаях из 1000, не > 2 σ в 954 случаях из 1000, не > 1 σ 683 из 1000. ДИСПЕРСИЯ И ЕЁ СВО-ВА. Сво-ва дисперсии: · Дисперсия постоянного числа равна 0 · Если все значения признака уменьшить или увеличить на какое-либо число А, то дисперсия от этого не изменится, т.е. дисперсию можно вычислить по отклонениям от какого-либо постоянного числа А · Если все значения признака уменьш/увел-ть в К-раз, то дисперсия от этого изменится в К2-раз, т.е. можно все значения признака уменьшить в К-раз, вычислить дисперсию, а затем умножить её на это постоянное число в квадрате. · Дисперсия признака равна разности среднего квадрата значений признака и квадратом их средней: σ2= х2 – х 2; x2 =∑x2f/∑f · Расчёт дисперсии (способ моментов или от условного нуля): σ2=∑(x-a)2*f/∑f -(x -a)2 ПРАВИЛО СЛОЖЕНИЯ ДИСПЕРСИЙ. Общая вариация в совокупности является результатом действия всех причин и измеряется общей дисперсией: σ2= ∑(x- x)2f/∑f. Вариации групповых средних измеряются отклонением групповых средних от общей средней, и отражает влияние фактора, по которому произведена группировка: σ2= ∑(xi - x)/n = ∑(xi - x)2*f/∑f, где xi – групповые средние. Остаточная или внутригрупповая вариация выражает отклонение отдельных значений признаков в каждой группе от их групповых средних, и отражает влияние всех прочих факторов, кроме положенного в основу группировки. Остаточная вариация будет отражать среднее из групповых дисперсий: δi2= ∑(xi- xi)2/ni; σi2 = ∑ σi2fi/∑ fi Общая вариация признаков совокупности определяется как сумма вариаций группировочных средних и остаточные вариации: σ2= δ2+ σi2. Суть равенства: общая дисперсия, возникающая под воздействием всех факторов должна быть равна сумме всех дисперсий, возникающих за счёт факторов группировки и под влиянием прочих факторов; это равенство известно как правило сложения дисперсий; оно позволяет находить общую дисперсию по групп-ым показателям. Коэффициент детерминации (отношение межгрупповой дисперсии к общей) = δ2/ σ2; его значение максимально и равно 1 если δ2=σ2; его значение минимально и равно 0, если δ2=0
|
||||
Последнее изменение этой страницы: 2016-06-29; просмотров: 406; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.93.14 (0.006 с.) |