Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Проектирование научного исследования

Поиск

 

У читателя вполне естественно может возникнуть вопрос – а что означает проектирование исследования? Что должно проектироваться? Отвечаем: проектируется система научного знания, которую намерен получить, построить исследователь. Ведь, как мы уже говорили в начале книги, ключевыми моментами проекта как цикла продуктивной деятельности являются: построенная модель создаваемой системы и план ее реализации; реализация системы; оценка реализованной системы и определение необходимости либо ее дальнейшей коррекции, либо «запуска» нового проекта. В отношении научного исследования эти ключевые моменты выглядят так: формулирование научной проблемы, построение научной гипотезы как познавательной модели (эти первые два из трех ключевых моментов относятся к фазе проектирования исследования); затем в ходе дальнейшего исследования эта модель – гипотеза проверяется и оценивается. Если она подтверждается, то гипотеза становится новой системой научного знания, созданной исследователем. Если гипотеза не подтверждается, то она отвергается, необходимо создание новой познавательной модели – новой гипотезы (или гипотез).

Фаза проектирования исследования включает в себя стадии: концептуальную, построения гипотезы, конструирования, технологической подготовки исследования (названия стадий и этапов проектирования заимствованы в основном, из публикаций по системному анализу).

КОНЦЕПТУАЛЬНАЯ СТАДИЯ ФАЗЫ ПРОЕКТИРОВАНИЯ ИССЛЕДОВАНИЯ. Концептуальная стадия проектирования делится на этапы: выявление противоречия, формулирование проблемы, определение цели исследования, формирование критериев – см. Табл. 5.

Естественно, первоначально, приступая к очередной научной работе, любой исследователь имеет замысел – задуманный в самых общих чертах проект – что он хочет получить. Замысел рождается на основе многих обстоятельств: потребностей практики, логики развития самой науки, предшествующего опыта исследователя – практического и/или научно-исследовательского, а также его личных вкусов и интересов, что является, в общем-то, определяющим фактором: ведь научная деятельность – это творческая деятельность, а творчество – дело тонкое. В отличие, допустим, от токаря, который должен делать изо дня в день заданную ему одну и ту же деталь по готовому чертежу, или от солдата, который беспрекословно должен выполнять приказы командира, исследователь должен иметь определенную свободу выбора направления, содержания, методов научной работы и т.д. Как показывает обширный опыт, заставлять исследователя работать по заданной кем-то, не им самим, теме бессмысленно и бесполезно. Исследователь сам выбирает тему научной работы, и сам формирует замысел исследования. Но уже при замысле исследователь должен определиться, к каким типам будет относиться его исследование.

Во-первых, в настоящее время общепринята следующая классификация типов исследований по их направленности в цепи «теория – практика»:

фундаментальные исследования, направленные на разработку и развитие теоретических концепций науки, ее научного статуса, ее истории. Результаты фундаментальных исследований не всегда находят прямой выход в практику;

прикладные исследования решают в большей мере практические задачи или теоретические вопросы практического направления. Обычно прикладные исследования являются логическим продолжением фундаментальных, по отношению к которым они носят вспомогательный характер;

разработки. Их задача – непосредственное обслуживание практики.

Во-вторых, выделяются четыре уровня общности исследований (см., например, [200]):

– общеотраслевой уровень значимости – работы, результаты которых оказывают воздействие на всю область той или иной науки;

– дисциплинарный уровень значимости характеризует исследования, результаты которых вносят вклад в развитие отдельных научных дисциплин, входящих в научную область;

– общепроблемный уровень значимости имеют исследования, результаты которых изменяют существующие научные представления по ряду важных проблем внутри одной дисциплины.

– частнопроблемный уровень значимости характеризует исследования, результаты которых изменяют научные представления по отдельным частным вопросам.

Сформировав замысел предстоящей работы и определив ее направленность, исследователь приступает к выявлению научного противоречия.

Этап выявления противоречий. Противоречие – см. Логический словарь-справочник Н.И. Кондакова[101] – это «взаимодействие между взаимоисключающими, но при этом взаимообусловливающими и взаимопроникающими друг в друга противоположностями внутри единого объекта и его состояний...». Как известно, выявление противоречий (научных) – это важнейший метод познания. Научные теории развиваются в результате раскрытия и разрешения противоречий, обнаруживающихся в предшествующих теориях или в практической деятельности людей.

Понятие «противоречие» может рассматриваться в данном случае в двух смыслах. Это, во-первых, когда что-то одно (высказывание, мысль) исключает что-то другое, несовместимое с ним. Такое толкование противоречия в строгом смысле, как правило, применимо к «точным» наукам, например, к физике. В качестве классических иллюстраций противоречий (в строгом смысле) можно привести противоречия, сложившиеся в конце ХIХ в.: между принципом относительности Г. Галилеяи системой уравнений Д. Максвеллав электродинамике, которое было разрешено созданной А. Эйнштейномспециальной теорией относительности. Или противоречие между корпускулярной и волновой теориями, которое было разрешено созданием квантовой механики.

В общественных и гуманитарных науках, пока что куда менее «точных», противоречие понимается во втором, менее «строгом» смысле – как несогласованность, несоответствие между какими-либо противоположностями, несоответствие между желательным (например, с нормативной точки зрения, с точки зрения теории) и действительным (имеющимся на практике). Но в любом случае в приведенном выше определении противоречия важно обратить внимание на то, что противоположности – внутри единого объекта.

Выявленное исследователем противоречие может иметь место в практике или в теории науки, может быть целый ряд противоречий. Классическими являются примеры противоречий из наук сильной версии (физики, химии и т.д.) – когда результаты эксперимента не укладываются в рамки существующей теории (см. обсуждение развития научных теорий в [116, 202]). Кроме того, неполнота исследованности предметной области (см. обсуждение примера Табл. 6 и Рис. 7, Рис. 10) является свидетельством неполноты теории, то есть наличия противоречия – несоответствия теории соответствующей предметной области.

На основе выявленного противоречия исследователь ставит для себя проблему исследования.

Этап постановки (формулирования) проблемы. Выдвижение, обоснование проблемы, поиски ее решения играют ведущую роль в творческом процессе научного познания. Под научной проблемой понимается такой вопрос, ответ на который не содержится в накопленном обществом научном знании. С гносеологической точки зрения проблема – это специфическая форма организации знания, объектом которого является не непосредственная предметная реальность, а состояние научного знания об этой реальности. Если мы знаем, что нам неизвестно что-то об объекте, например, какие-либо его проявления или способы связи между его какими-то компонентами, то мы уже имеем определенное проблемное знание.

Например, мы четко знаем, что до конца не известна природа шаровой молнии. Здесь налицо знание о незнании. Оно лежит в основе выдвижения научных проблем.

Проблема является формой знания, способствующей определению направления в организации научного исследования – она указывает на неизвестное и побуждает к его познанию. Проблема обеспечивает целенаправленную мобилизацию прежних и организацию получения новых, добываемых в ходе исследования знаний. Проблема возникает в результате фиксации учеными реально существующего или прогнозируемого противоречия, от разрешения которого зависит прогресс научного познания и практики: обобщенно говоря, проблема есть отражение противоречия между знанием и «знанием незнания».

Развитие наукиневозможно без выполнения требования целенаправленности. Целенаправленность же в научном творчестве однозначно связана с проблемой. Ведь именно она, указывая на неизвестное и локализируя его, тем самым выполняет функцию целенаправления. Но это особая целенаправленность, достаточно четкая, чтобы определить область непознанного, но и совершенно нечеткая, если говорить о содержании того, что еще предстоит познать. В процессе актуализации проблем исследователь постоянно попадает в ситуации, которые характеризуются высокой степенью неопределенности. Это заставляет ученых в исследовательском процессе обращаться к структуре изучаемой проблемы и находить критерии для более или менее четкого разграничения действительных и мнимых, актуальных, ценных и менее актуальных и значимых проблем.

При этом существенную роль играет внутренняя логика самой теории, так как, если выявлена проблема, лежащая в основаниях теории, то ее разрешение может вызвать целую цепочку следствий. Например, если бы в физике удалось описать в рамках единой теории все известные виды взаимодействий (так называемая проблема создания общей теории поля), это привело бы к теоретическому предсказанию и последующему экспериментальному открытию множества новых физических явлений и эффектов. Другой пример – проблемы, сформулированные Давидом Гильбертомна Парижском международном математическом конгрессе 1900-го года, оказали определяющее влияние на развитие математики XX века (и до сих пор многие из 23-х проблем Гильбертане решены).

В процессе постановки проблемы выделяют следующие этапы (см., например, [233]): формулирование, оценка, обоснование и структурирование проблемы.

1. Постановка проблемы. В процессе формулирования проблемы важное значение имеет постановка вопросов. Вопросы могут быть ясно выражены или не высказаны, четко определены или подразумеваться. Постановка проблемы есть, прежде всего, процесс поиска вопросов, которые, сменяя друг друга, приближают исследователя к наиболее адекватной фиксации неизвестного и способов превращения его в известное. Это важный момент постановки проблемы. Но постановка проблемы не исчерпывается этим моментом. Во-первых, не всякий научный вопрос есть проблема – он может оказаться всего лишь уточняющим вопросом, или вопросом, вообще неразрешимым для науки на сегодняшний день.

Во-вторых, для постановки проблемы недостаточно вопроса. Требуется еще выявление оснований данного вопроса.

Это уже другая процедура в процессе постановки проблемы. Это процедура по выявлению противоречия, вызвавшего к жизни проблемный вопрос, которое нужно точно зафиксировать.

Приведем такой интересный с нашей точки зрения пример фиксации противоречия, лежащего в основе научной проблемы [233]. Для того, чтобы много знать и уметь, надо иметь хорошую память и тренированное мышление. И здесь мы встречаемся с неизбежным противоречием: отдать больше времени накоплению знаний – значит меньше оставить времени на тренировку мышления, и наоборот. А раз так, следовательно, есть какой-то оптимум. Если бы его удалось установить, отпали бы многие сложности.

Важное значение для формулирования проблемы имеет построение образа, «проекта» ожидаемого конечного результата исследования на основе прогноза развития исследования и «фона» данной проблемы. Под «фоном» понимаются все обстоятельства, с которыми связана на данном этапе, а также будет связана в дальнейшем, проблема и которые оказывают и будут оказывать влияние на ход и результаты исследования.

2. Оценка проблемы. В оценку проблемы входит определение всех необходимых для ее решения условий, в число которых в зависимости от характера проблемы и возможностей науки входит определение методов исследования, источников информации, состава научных работников, организационных форм, необходимых для решения проблемы, источников финансирования, видов научного обсуждения программы и методик исследования, а также промежуточных и конечных результатов, перечня необходимого научного оборудования, необходимых площадей, партнеров вероятной кооперации по проблеме и т.д.

3. Обоснование проблемы. Обоснование проблемы – это, во-первых, определение содержательных, аксиологических (ценностных) и генетических связей данной проблемы с другими – ранее решенными и решаемыми одновременно с данной, а также выяснение связей с проблемами, решение которых станет возможным в зависимости от решения данной проблемы.

Во-вторых, обоснование проблемы – это поиск аргументов в пользу необходимости ее решения, научной или практической ценности ожидаемых результатов. Это необходимость сравнивать данную проблему (или данную постановку проблемы) с другими в аспекте отбора проблем для их решения с учетом важности каждой из них для потребностей практики и внутренней логики науки.

При этом современная наука часто имеет дело с проблемами, допускающими несколько вариантов решения. В том числе, например, в современной российской экономике появилось многообразие моделей различных фирм, подходов к организации бизнеса и т.д. В таких случаях приходится детально обосновывать, какое именно решение, какая именно модель обладает наибольшими преимуществами и поэтому более желательна в данных условиях. Чем сложнее проблема, тем большее количество разнородных факторов необходимо учитывать при обосновании ее разрешимости и планировании ее решения. Умение ученого формулировать и критически анализировать аргументы, используемые для обоснования разрешимости или принятия предлагаемого решения проблемы, является в таких условиях важной предпосылкой прогресса науки.

При оценке значимости проблемы нередко можно встретиться с переоценкой ее действительной значимости. В связи с этим у ученых вырабатывается защитная реакция: действительную значимость любой проблемы они склонны рассматривать в гораздо меньших масштабах, чем авторы научных трудов, где раскрываются эти проблемы. Это вполне естественное для науки явление. Наука должна быть в меру консервативна и не должна кидаться в крайности по поводу любой новой работы любого нового автора. Но, в то же время, иногда это приводит к недооценке важных проблем и неоправданной задержке развития новых направлений в науке. Например, то, что произошло с генетикой и кибернетикой в начале 50-х годов ХХ века – по этим направлениям советская наука была отброшена на десятилетия назад.

Для снижения субъективности оценки проблемы важное значение имеет выдвижение, как самим исследователем, так и его коллегами, всевозможных возражений против проблемы. Под сомнение ставится все, что относится к существу проблемы, условиям постановки и следствиям ее разрешения: есть ли проблема? Имеется ли практическая или научная потребность в ее разрешении? Возможно ли ее разрешение при современном состоянии науки? Посильна ли эта проблема данному исследователю или данному научному коллективу? Какова возможная ценность планируемых результатов?

Правильная постановка проблемы предполагает состязание аргументов «за» и «против». Именно в фокусе противоположных суждений рождается правильное представление о сути проблемы, необходимости решения и ее ценности, ее теоретической и практической значимости.

4. Структурирование проблемы. Исходным пунктом структурирования проблемы является ее расщепление, или «стратификация» проблемы. Расщепление (декомпозиция – см. ниже) – поиск дополнительных вопросов (подвопросов), без которых невозможно получить ответ на центральный – проблемный – вопрос. В исходной позиции редко можно сформулировать все подвопросы проблемы. Это происходит в значительной мере в ходе самого исследования. В начале часто оказывается чрезвычайно трудным предугадать все, что потребуется для решения проблемы. Поэтому стратификация (расщепление, декомпозиция) относится ко всему процессу решения проблемы. В исходном же пункте ее постановки речь идет о поиске и формулировании всех возможных и необходимых подвопросов, без которых нельзя начать исследование и рассчитывать на получение ожидаемого результата.

«Наука ищет пути всегда одним способом, – писал В.И. Вернадский, – она разлагает сложную задачу на более простые, затем, оставляя в стороне сложные задачи, разрешает более простые и только тогда возвращается к оставленной сложной» [34, т. 5, С. 122].

Далее, в процессе расщепления проблемы необходима ее локализация – ограничение объекта изучения реально обозримыми и посильными для исследователя или исследовательского коллектива пределами с учетом наличных условий проведения исследования.

Исследователю крайне важно уметь отказаться от того, что может быть само по себе чрезвычайно интересно, но затруднит получение ответа на тот проблемный вопрос, ради которого организуется исследование.

За отграничением, локализацией проблемы следует упорядочение всего набора вопросов (подвопросов) проблемы в соответствии с логикой исследования – то есть выстраивание своеобразного «сетевого графика» решения подвопросов.

Постановка проблемы осуществляется всегда с использованием средств какого-то научного языка. Избранные для выражения проблемы понятия и структуры языка далеко не индифферентны ее смыслу. Нередки случаи, когда непонимание учеными друг друга было связано не со сложностью самих проблем, а с неоднозначным употреблением терминов.

Особенно важно не допустить терминологической путаницы в исходном пункте научного исследования: в процессе постановки проблемы и в ходе ее развертывания необходимо четкое определение всех понятий, имеющих отношение к проблеме. Кроме того, неясности, неоднозначные моменты у тех, кто ставит проблему, могут зачастую с успехом быть устранены, если удается изложить проблему без специальных терминов. Пользу перевода на простой язык можно проиллюстрировать цитатой из известной пародии «Диалоги ХХI века», где высказывания специалиста-ученого переводит на понятный широкой публике язык приспособленный для этого робот: «Лектор: Представьте себе четыре моноциклических агрегата, перемещающихся по эквидистантным траекториям... Робот-переводчик: Представьте себе... Э... четыре колеса».

Таким образом, мы рассмотрели одну из специфических форм организации научного знания, имеющую важнейшее значение для научного исследования – проблему, а процесс постановки проблемы – как метод познания.

Поставив проблему своего исследования, исследователь определяет его объект и предмет.

Объект и предмет исследования. Объект исследования в гносеологии – теории познания – это то, что противостоит познающему субъекту в его познавательной деятельности. То есть это та окружающая действительность, с которой исследователь имеет дело.

Предмет исследования – это та сторона, тот аспект, та точка зрения, «проекция», с которой исследователь познает целостный объект, выделяя при этом главные, наиболее существенные (с точки зрения исследователя) признаки объекта. Один и тот же объект может быть предметом разных исследований или даже целых научных направлений. Так, объект «учебный процесс» может изучаться дидактами, методистами, психологами, физиологами, гигиенистами и т.д. Но у них у всех будут разные предметы исследования. Более того, предмет одного исследования может служить объектом другого (более частного) исследования. Например, объект «качество жизни» изучается в медицине, экономике, социологии и т.д. Такой аспект этого объекта как «здоровье населения» является, с одной стороны, предметом исследований для медицины, а с другой стороны – объектом исследований в такой отрасли медицинских наук как организация здравоохранения.

Рассмотрим (по [146]) более детально соотношения объекта и предмета исследования (познания).

Предмет познания формируется в результате определенных познавательных операций с объектом познания. Предмет познания представляет собой совокупность свойств – связей и законов, изучаемых данной наукой и получивших выражение в определенных логических и знаковых формах. Этим предмет познания отличается от объекта познания, который существует независимо от познающего субъекта – в природе, человеке или обществе.

Отличие предмета от объекта познания состоит также в том, что один и тот же объект может изучаться многими науками, каждая из которых обязательно имеет свой особый предмет познания. Например, космические объекты изучаются астрономией, астрофизикой, астроботаникой и т.д. Общество как объект познания изучается историей, политэкономией, философией, демографией и т.д. Все эти науки имеют свой особый предмет познания.

Предмет и объект познания отличаются друг от друга также по своей структуре. Структура объекта познания представляет собой взаимодействие основных составных элементов данного объекта. В результате такого взаимодействия основных составных элементов возникают различные свойства, связи объекта и законы его развития. Хотя структура предмета познания в определенной степени детерминируется структурой объекта, но эта детерминация не является жесткой. Структура предмета познания относительно самостоятельна. Основными элементами этой структуры выступают, во-первых, история развития науки об изучаемом объекте; во-вторых, существенные свойства, а также законы развития объекта, получившие в процессе познания выражение в определенных логических формах; в-третьих, логический аппарат и методы, используемые в процессе формирования предмета познания.

Структура предмета познания во многом зависит от того уровня познания, на котором происходит формирование предмета. На эмпирическом уровне предмет познания непосредственно связан с объектом. Все познавательные операции на этом уровне осуществляются при помощи таких методов, как наблюдение, измерение и т.д. При помощи этих методов происходит фиксация, регистрация, сравнение, классификация всей эмпирической информации об изучаемом объекте. В соответствии с этой информацией предмет эмпирического познания включает в себя, во-первых, все зафиксированные факты относительно поведения изучаемого объекта; во-вторых, все данные измерения различных свойств и связей изучаемого объекта; в-третьих, знаки и знаковые формы, при помощи которых регистрируется эмпирическая информация; в-четвертых, все статистические данные об изменении, развитии, возникновении и исчезновении таких свойств и связей изучаемого объекта, которые выявлены в процессе эмпирического изучения.

Отсюда вытекает, что уже на эмпирическом уровне познания предмет изучения не совпадает с объектом. Предмет познания здесь выражает лишь такие явление, их свойства и связи, которые удалось зафиксировать, классифицировать, отобразить и выразить при помощи знаковых форм. Все это говорит о том, что уже на эмпирическом уровне происходит опосредование предмета познания. Связь между предметом и объектом познания на этом уровне опосредуется статистическими данными об изучаемых явлениях, логическими средствами их выражения, предшествующими знаниями, на основе которых осуществляются все эмпирические познавательные операции.

На теоретическом уровне происходит дальнейшее опосредование предмета познания. Он все более отдаляется, абстрагируется от объекта. На теоретическом уровне осуществляется анализ эмпирического материала. На основе этого материала раскрывается сущность изучаемых явлений, их свойств и связей, формулируются законы развития изучаемых объектов, научные гипотезы и теории, осуществляется научное предвидение. Познавательные операции на теоретическом уровне обусловливают в определенной степени особенности предмета познания на этом уровне. Теперь предмет познания охватывает, выражает наиболее существенные и наиболее глубокие черты и свойства изучаемого объекта. Он связан уже не с конкретными явлениями, а с законами развития этих явлений. Законы развития объектов, научные гипотезы и теории составляют основные характерные черты предмета познания на теоретическом уровне.

Понятия «объект познания» и «предмет познания» выполняют неодинаковые функции в процессе познания. Понятие «объект познания» выражает, фиксирует объективное существование изучаемых явлений, их свойств, связей и законов развития. Понятие «объект познания» ориентирует исследователей на то, чтобы наиболее полно и всесторонне отражать существенные, объективные стороны изучаемого объекта в различных формах. Чем полнее и точнее будут отражаться эти объективные стороны в знании, тем глубже по своему научному содержанию становится это знание. Понятие «объект познания» выступает как исходное понятие для интерпретации содержания наших знаний.

Понятие «предмет познания», прежде всего, определяет те границы, в пределах которых изучается тот или иной объект. В этом понятии выражаются и фиксируются те свойства, связи и законы развития изучаемого объекта, которые уже включены в научное знание и выражены в определенных логических формах. Выход той или иной науки за границы своего предмета означает или некомпетентное вмешательство данной науки в сферу других наук, или отпочкование от данной науки новых научных направлений, которые впоследствии могут сформировать свой собственный предмет изучения.

Позитивными примерами здесь являются физическая химия, молекулярная биология и другие науки, возникшие на стыке других наук, достигших определенного уровня развития. В качестве негативного примера можно привести использование необоснованных аналогий и/или необоснованное расширение предмета исследований. Причем этим «грешат» представители наук как слабой версии (например, проведя педагогический эксперимент в одном образовательном учреждении, исследователь утверждает, что полученные им результаты справедливы в любом образовательном учреждении – налицо необоснованное расширение предмета исследований, необоснованный перенос результатов с одного предмета на другой), так и сильной версии (нередко можно встретить работы, в которых ученый-математик применяет хорошо освоенный им аппарат в новой для него предметной области, не разобравшись в специфике последней – налицо использование необоснованных аналогий). И в том, в другом случае справедливость получаемых результатов вызывает обоснованные сомнения (см. критерии оценки научной тории ниже).

В предмете познания в концентрированном виде формулируются познавательные задачи той или иной науки, определяются главные направления научного поиска, а также возможности решения соответствующих познавательных задач средствами и методами данной науки. Ведь для того, чтобы однозначно охарактеризовать «чем занимается» тот или иной исследователь, достаточно указать предмет его исследований и используемые им методы (см. также Рис. 7). Периоды интенсивного развитиятой или иной науки имеют место в те моменты, когда расширяется либо ее предмет, либо возникают новые методы. В качестве примера можно привести астрономию, изучавшую методом наблюдения звездное небо. С расширением своего предмета (включив в свою проблематику объяснение возникновения и развития Вселенной и ее элементов), она превратилась в астрофизику. Скачки развития последней соответствуют либо возникновению новых теорий и экспериментальному их подтверждению (например, открытие расширения Вселенной в 20-х годах XX века), либо появлению новых экспериментальных устройств (например, изобретение радиотелескопа).

Парадоксальным отрицательным примером отсутствия определения предмета исследования является такое научное направление как «исследование операций». Это область прикладной математики, изучающая решение прикладных математических задач моделирования операций (целенаправленных действий [44]): явлений экономики, производства, социальных систем и т.д. [29, 44, 58 и др.]. Этому направлению в науке посвящено большое количество исследований, выделена даже отдельная научная специальность, но, к сожалению, никто из авторов не удосужился корректно определить предмет этой «науки» – все сводится только к наборам отдельных задач, которые ученые могут сегодня решить. И такое положение дел характерно для многих научных направлений, границы которых определяются не предметом познания, не четко обозначенной предметной областью, а совокупностью уже полученных (иногда разрозненных) теоретических результатов. Более того, сегодня нередко можно встретить учебники для ВУЗов по многим «новым» учебным курсам, в которых вообще отсутствует определение предмета исследований соответствующей дисциплины (конкретные примеры приводить мы не будем, будучи ограничены нормами научной этики).

Таким образом, диалектическое соотношение объекта и предмета познания имеет первостепенное значение в процессе научного исследования. Оно создает возможность научной интерпретации содержания формулируемых в процессе исследования знаний и строгого определения тех границ, в пределах которых данная наука может изучать собственными средствами и методами объективные явления, их свойства, связи и законы развития.

Как видим, грамотное определение объекта и предмета исследования представляет весьма непростую задачу. Она еще больше усложняется в случае проведения крупных обобщающих исследований, которые являются плодом многолетних научных исследований одного автора, выполнившего большую серию отдельных исследований, либо результатом работы целого коллектива исследователей, либо и того и другого вместе. В этом случае прежде, чем определять объект и предмет обобщающего исследования, необходимо четко обозначить его предметную область (напомним, что предметная область – это вся совокупность явлений, описываемых данной теорией [227]).

У исследователя, взявшегося за такое обобщающее исследование, появляются многочисленные разнородные и разноаспектные результаты, которые трудно объединить в единое целое.

Начинается длительный поиск – какая же предметная область, какая же формулировка темы, какая концепция могут объединить, собрать воедино все наработанные результаты или, по крайней мере, их бóльшую часть. Ведь нередко бывает, что часть результатов никак не ложится в единое русло и их приходится отбрасывать. В то же время подчас оказывается, что чего-то из необходимых результатов недостает, и исследование следует продолжить. Здесь будет уместно привести такую аналогию из теории множеств (Рис. 6 – диаграммы Эйлера–Венна). Представим себе, что имеются отдельные разрозненные результаты – «множества» – 1, 2, 3, 4 и т.д. (см. Рис. 6а). Они могут частично «перекрывать» друг друга. Задача состоит в том, чтобы найти такое общее множество – объединяющее множество (см. Рис. 6б), которое вберет в себя все или, по крайней мере, большую часть отдельных множеств. Подчас отдельные результаты, не относящиеся к определенной конечной предметной области, приходится отбрасывать (на Рис. 6б – это множества 8 и 9).

 

 

Рис. 6. Диаграммы Эйлера-Венна. Нахождение «объединяющего» множества

 

Как правило, такую объединяющую предметную область можно выявить.

Попробуем описать примерный «алгоритм» этого поиска. Зададимся в самом общем виде вопросом – откуда появляются новые результаты, которые могут стать основой для обобщающего исследования? Представим себе три условные плоскости (см. Рис. 7): плоскость предметных областей; плоскость методов и средств познания – условно назовем их общим названием «технологии» (познания); плоскость результатов.

 

 

Рис. 7. Варианты получения новых научных результатов

 

Новые результаты могут быть получены:

1. Либо тогда, когда исследована новая, ранее не изученная предметная область (Рис. 7а);

2. Либо к ранее исследованной предметной области применены новые технологии – методы или средства познания (Рис. 7б); например, к исследованию какой-либо предметной области применен новый исследовательский подход, или применена какая-либо теория из другой области научного знания (как уже говорилось, теория может выступать в роли метода познания), или применен какой-либо математический аппарат(в роли средства познания), ранее не применявшийся к исследованию данной предметной области, или применены новые материальные средства – например, новые приборы либо новые языковые средства и т.д.;

3. Либо одновременно исследуется новая предметная область с использованием новых технологий (Рис. 7в).

Интересно, что в некоторых отраслях науки исследователей принято подразделять на две категории. Одних условно называют «гаечниками» (они как бы «отворачивают гайки» – исследуют новые предметные области). Других – «ключниками» (они применяют новые технологии познания, то есть «подбирают новые ключи для отворачивания гаек»). Исследователь должен четко определить для себя – какой из этих вариантов соответствует его замыслу и наработанным результатам.

Еще один вариант (Рис. 7г), очевидно, принципиально невозможен – нельзя получить новые результаты, сделать крупные обобщения, рассматривая уже изученную предметную область и используя прежние технологии.

Можно выделить следующую закономерность – чем шире предметная область, тем сложнее получать для нее общие научные результаты. В математике этот эффект проявляется наиболее ярко: любое формальное утверждение (например, теорема) состоит из двух частей – предположений («Пусть...») и результата (вывода: «Тогда...»). Чем более сильные предположения (условия) – иначе говоря, ограничения – вводятся, тем проще доказать один и тот же результат, или тем более глубокие результаты можно получить. При минимальных (слабых) предположениях (условиях, ограничениях) получаются наиболее слабые результаты. И наоборот – чем более сильный результат необходим, тем больше ограничивающих предположений, как правило, приходится вводить. Таким образом, существует определенный «баланс» между вводимыми предположениями и получаемыми результатами. «Прорывом» в математике (да и в других науках, существенно использующих формальный аппарат) является либо получение более общих (новых) результатов при существующих (или более слабых) предположениях, либо ослабление предположений, при которых остаются справедливыми известные выводы.

С точки зрения разделения наук на науки сильной и слабой версии (см. главу 1), эту закономерность можно сформулировать следующим образом: более «слабые» науки вводят самые минимальные ограничивающие предположения (а то и не вводят их вовсе) и получают наиболее размытые результаты, «сильные» же науки наоборот – вводят множество ограничивающих предположений, используют специфические научные языки, но и получают более четкие и сильные (и, зачастую, более обоснованные) результаты, область применения которых весьма заужена (четко ограничена введенными предположениями).

Вводимые предположения (условия) ограничивают область применимости (адекватности) следующих из них результатов (см. также ниже обсуждение проблемы адекватности модели). Например, в области управления социально-экономическими системами математика (исследование операций, теория игри т.д.) дает эффективные решения, но область их применимости (адекватности) существенно ограничена теми четкими предположениями, которые вводятся при построении соответствующих моделей. С другой стороны, общественные и гуманитарные науки, также исследующие управление социально-экономическими системами, почти не вводят предположений и предлагают «универсальные рецепты» (то есть область применимо



Поделиться:


Последнее изменение этой страницы: 2016-06-23; просмотров: 2016; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.15.113.71 (0.016 с.)