Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Потребность организма в солиСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
О том, что соль необходима для жизни, люди знали уже в те древнейшие времена, когда еще не было необходимости в сохранении пищевых продуктов. Ионы соли играют в организме очень важную роль, поддерживая электролитный баланс между клетками и внеклеточной жидкостью. Часть процесса генерации электрического импульса, передающегося по нервным клеткам, происходит при участии так называемого натрий-калиевого насоса. Из клеток выталкивается больше ионов натрия, чем туда проникает ионов калия, поэтому цитоплазма клетки заряжена отрицательно по сравнению с внешней поверхностью клеточной мембраны. Так создается разделение зарядов, известное под названием мембранного потенциала, которое и создает электрические импульсы. Таким образом, соль совершенно необходима для функционирования нервных клеток и мышц. Молекулы сердечных гликозидов, таких как дигоксин и дигитоксин из наперстянки, ингибируют активность натрий-калиевого насоса, в результате чего повышается внутриклеточная концентрация ионов натрия. Это повышает сократительную способность сердечных мышц и объясняет действие данных молекул в качестве стимуляторов сердечной деятельности. Кроме того, ион хлора, содержащийся в соли, нужен для образования соляной кислоты, которая является важнейшим компонентом желудочного сока. Концентрация соли в организме здорового человека изменяется в очень узких пределах. Недостаток соли должен быть возмещен, а избыток выведен. Недостаток соли в организме вызывает снижение массы тела и потерю аппетита, тошноту, судороги, апатию, а в крайних случаях, как у бегунов-марафонцев, может привести к разрыву сосудов и смерти. Избыток соли ведет к повышенному кровяному давлению (важный фактор, способствующий развитию сердечно-сосудистых заболеваний), а также к нарушению работы печени и почек. В человеческом теле в среднем содержится четыре унции соли [113,4 г]. Мы постоянно теряем ее, главным образом с потом и мочой, и поэтому вынуждены ежедневно восстанавливать баланс. В доисторические времена люди получали соль с мясом крупных травоядных животных, на которых они охотились. С переходом на растительную пищу и развитием сельского хозяйства возникла необходимость в дополнительных источниках соли. Хищникам дополнительная соль не нужна, а вот травоядные в ней нуждаются, они ищут ее и лижут. Люди, живущие в тех регионах, где едят мало мяса, а также вегетарианцы нуждаются в дополнительном источнике соли. Когда люди перешли к оседлому земледелию, им пришлось добывать соль самим или покупать ее.
Налоги на соль
Потребность человека в соли, а также специфические способы ее получения способствовали тому, что на протяжении всей истории это вещество постоянно было объектом политического контроля, государственной монополии и налогообложения. Налог на соль для любого правительства был надежным источником дохода. Соль ничем нельзя заменить, в ней нуждается каждый, и каждый вынужден за нее платить. Источники соли были известны, скрыть ее производство достаточно трудно, поскольку соль занимает много места, так что ее транспортировку легко контролировать и облагать пошлиной. В 2000 году до н. э. китайский правитель Юй из династии Ся повелел снабжать двор солью из провинции Шаньдун. С тех пор много столетий соль приносила государству прибыль. В библейские времена соль рассматривали как пряность и облагали соответствующим налогом, а на караванных путях за ее провоз взимали пошлину. После смерти Александра Македонского в 323 году до н. э. власти Сирии и Египта продолжали собирать налог на соль, установленный греческой администрацией. Все это время для сбора налогов нужны были люди. Многие из сборщиков налогов сделали себе состояние, увеличивая поборы, вводя дополнительные пошлины и продавая освобождение от налога. Не был исключением и древнеримский период. Сначала добыча соли в Остии в дельте Тибра контролировалась государством, так что соль продавали всем желающим по разумной цене. Однако это продолжалось недолго. Соблазн был слишком велик, и вскоре на торговлю солью были наложены пошлины. По мере расширения Римской империи усиливалась монополия на соль и увеличивались налоги. Сборщики налогов — независимые агенты, подчинявшиеся наместнику провинции, собирали пошлины при любой возможности. Для тех, кто жил вдали от источников соли, ее дороговизна объяснялась не только ее транспортировкой, но и всевозможными налогами и пошлинами. В Средние века в Европе соль также облагали налогом, обычно в виде пошлин с барж и повозок, перевозивших соль от шахт или мест производства. Своего апогея этот процесс достиг во Франции, где был введен печально известный налог габель. О происхождении габели нет единого мнения. Некоторые считают, что Карл I Анжуйский ввел ее в Провансе в 1259 году, другие предполагают, что этот налог изначально был общим, а в конце XIII века им стали облагать такие продукты, как зерно, вино и соль, чтобы окупить военные расходы. Так или иначе к XV веку во Франции габель стала одним из основных налогов, и этим словом называли только налог на соль. Но габель не была просто налогом. Закон предусматривал: каждый мужчина, женщина и ребенок старше восьми лет обязаны покупать некоторое количество соли по цене, назначенной королем (так называемая соляная повинность). Повышались не только налоги на соль. В любой момент по прихоти короля могло увеличиться количество соли, которое каждый подданный обязан был купить. Подушный налог для всех жителей вскоре стал тяжким грузом для одних и менее тяжким для других. Провинции, получавшие соль с побережья Атлантики, платили “большую габель”, ставка которой вдвое превышала аналогичный налог в других провинциях (“провинциях малой габели”), получавших соль со средиземноморского побережья. В результате политических сделок некоторые области были освобождены от габели или выплачивали лишь ее часть. В какой-то момент Бретань была полностью освобождена от этого налога, а Нормандия платила его по пониженной ставке. В определенный момент стоимость соли для жителей “провинций большой габели” более чем в двадцать раз превысила ее реальную стоимость. “Стрелки габели” (archersde lagabelle) следили за тем, чтобы люди покупали установленное законом количество соли. Нередки были случаи контрабанды соли, несмотря на жестокие наказания (попавшихся обычно ссылали на каторгу). Больше всего от этого жестокого и несправедливого налога страдали крестьяне и бедные горожане. Воззвания к милосердию короля не были услышаны, и некоторые историки полагают, что именно габель была одной из главных причин недовольства народа, вылившегося во Французскую революцию. Габель была отменена на пике революции, в 1790 году, и более тридцати сборщиков налога были казнены. Но свобода оказалась недолгой. В 1805 году Наполеон восстановил габель: он утверждал, что это была вынужденная мера, призванная покрыть расходы, связанные с его итальянской кампанией. Габель была окончательно отменена только после Второй мировой войны. Однако Франция была не единственной страной, в которой существовали налоги на самые необходимые продукты. У берегов Шотландии, особенно в заливе Ферт-оф-Форт, издавна добывали соль. В этом регионе с прохладным и влажным климатом невозможно дожидаться испарения воды под лучами солнца, так что здесь морскую воду кипятили в больших чанах. Сначала солевары жгли древесину, позднее — уголь. К началу XVIII века в Шотландии было более ста пятидесяти таких солеварен, да еще множество других, работавших на торфе. Производство соли было для шотландцев настолько важным, что согласно пункту 8 Акта об унии (1707) Англии и Шотландии последняя на семь лет освобождалась от уплаты английского соляного налога, а после во все времена платила его по сниженной ставке. В Англии соль добывали из минеральных источников и в соляных копях, причем оба способа были гораздо более продуктивными, чем выпаривание морской воды. Чтобы выжить, шотландской солеваренной индустрии было необходимо освобождение от английских пошлин. В 1825 году Великобритания первой отменила налог на соль. Произошло это не по причине негодования, которое этот налог столетиями вызывал у простых людей, а потому, что значение соли изменилось. Промышленную революцию обычно воспринимают как революцию в механике (усовершенствование ткацкого станка и прядильной машины, изобретение паровой машины), однако это была также и химическая революция. Крупномасштабное производство химических реактивов было необходимо для удовлетворения нужд текстильной и красильной промышленности, для получения мыла, стекла, посуды, стали и бумаги, а также для пивоварения и производства спиртных напитков. Производители требовали отмены налога на соль, поскольку соль стала скорее важным промышленным сырьем, нежели средством для консервирования продуктов питания и пищевым ингредиентом. Отмена налога на соль, о которой мечтали многие поколения бедняков, произошла только тогда, когда это стало выгодно для развития промышленности Великобритании. Впрочем, благотворные перемены в метрополии никак не сказалось на английских колониях. В Индии навязанный британцами налог на соль стал символом колониального гнета, против которого выступал Ганди. Налог на соль в Индии не был просто налогом. Как показала история, от монополии на торговлю солью зависело удержание политической и экономической власти. В Британской Индии законом запрещалась не санкционированная правительством продажа соли. Вне закона был объявлен даже сбор соли, которая естественным путем образовывалась в солончаках на побережье. Соль, которую привозили из Англии, нужно было покупать у государственных распространителей по цене, установленной британцами. В Индии, где много вегетарианцев, а потери соли организмом велики из-за жаркого климата, солить пищу совершенно необходимо. Но при колониальной администрации люди вынуждены были платить за минерал, который могли самостоятельно собрать или получить почти бесплатно. В 1923 году, почти сто лет спустя после отмены налога на соль в Великобритании, налог на соль в Индии был увеличен вдвое. В марте 1930 года Ганди с горсткой соратников отправился в четырехсоткилометровый поход к маленькой деревне Данди на северо-западном побережье Индии. По дороге к ним присоединились тысячи людей, и когда они достигли берега, то начали собирать соль, кипятить морскую воду и продавать соль. Еще тысячи людей присоединились к этому движению. Нелегально собранную соль продавали в городах и деревнях по всей Индии. Нередко ее отбирала полиция. Кроме того, полиция избивала сторонников Ганди, тысячи людей были брошены в тюрьмы. Но тысячи других занимали место арестованных и продолжали добывать соль. По всей стране начались забастовки и демонстрации. В марте следующего года драконовский закон был изменен: местному населению разрешалось собирать и получать соль из местных источников и продавать ее в своей деревне. Хотя налог на соль по-прежнему существовал, монополия была подорвана. Идея Ганди о гражданском неповиновении оказалась жизнеспособной, и дни британского владычества в Индии были сочтены.
Соль как сырье
Отмена налога на соль в Великобритании способствовала развитию многих химических производств, поскольку соль является важным исходным материалом для получения широкого спектра химических веществ. В частности, соль нужна для получения другого соединения натрия — карбоната натрия (Na2CO3), известного как кальцинированная (хозяйственная) сода. Кальцинированную соду, которую используют для производства мыла, раньше получали главным образом из природных источников, таких как высыхающие минеральные озера или зола морских водорослей. Полученная такими путями кальцинированная сода содержит примеси, а запасы ее невелики, так что предпринимались попытки получить карбонат натрия из более доступного источника — хлорида натрия. В 1790 году Арчибальд Кокрейн, девятый граф Дандональд, который считается одним из лидеров “химической революции” в Великобритании и пионером производства щелочи, запатентовал процесс превращения соли в “искусственную щелочь”. Нужно сказать, что скромное родовое имение графа находилось неподалеку от побережья Ферт-оф-Форта и было окружено множеством небольших солеварен. Однако предложенный Кокрейном процесс не имел коммерческого успеха. В 1791 году во Франции Никола Леблан предложил метод получения карбоната натрия из соли, серной кислоты, угля и известняка. Французская революция отсрочила воплощение в жизнь идеи Леблана, и впервые успешное производство кальцинированной соды было налажено в Англии. В начале 60-х годов XIX века в Бельгии братья Эрнст и Альфред Солвей усовершенствовали метод превращения хлорида натрия в карбонат натрия с помощью известняка (CaCO3) и газообразного аммиака (NH3). Ключевым этапом процесса было выпадение осадка бикарбоната натрия (NaHCO3) из концентрированного солевого раствора, через который продували аммиак и углекислый газ (из известняка):
Затем бикарбонат натрия нагревали и получали кальцинированную соду:
В наше время предложенный братьями Солвей процесс остается основным синтетическим методом получения кальцинированной соды, однако открытие богатых залежей природной кальцинированной соды снизило потребность в ее синтезе (например, запасы кальцинированной соды в бассейне реки Грин-Ривер в американском штате Вайоминг оцениваются в десять миллиардов тонн). Другое соединение натрия — каустическая сода (NaOH) — тоже издавна пользовалось большим спросом. В промышленности каустическую соду, или гидроксид натрия, получают путем пропускания электрического тока через раствор хлорида натрия. Этот процесс называется электролизом. В США каустическая сода входит в десятку веществ с наибольшим объемом производства. Ее используют для экстракции металлического алюминия из руды, для производства искусственного шелка, целлофана, мыла, детергентов, нефтепродуктов, бумаги и древесной пульпы. Образующийся при электролизе газообразный хлор сначала считали бесполезным побочным продуктом реакции, но вскоре стало ясно, что хлор — прекрасный отбеливатель и мощное дезинфицирующее средство. На сегодняшний день оба продукта промышленного электролиза раствора соли имеют одинаковую ценность. Хлор находит применение в производстве многих органических соединений, таких как пестициды, полимеры и лекарства. Разные народы мира хранят предания о соли. О ней говорится и в Библии, и в скандинавских мифах, и в легендах североамериканских индейцев. Соль используют в различных церемониях и ритуалах, она символизирует гостеприимство и удачу, а еще защищает от злых духов и всевозможных напастей. Значительное влияние, которое соль оказала на общество, отразилось и в языке. Английское слово salary, зарплата, происходит от слова “соль”, поскольку римским солдатам нередко выплачивали жалованье солью. Такие слова, как “салат” (который раньше заправляли одной только солью), “соус”, “салями” и “сосиски”, происходят от того же латинского корня. Как и во многих других языках, нашу речь “присаливают” метафоры: “соль земли”, “съесть пуд соли”, “не солоно хлебавши” и так далее. Парадокс в том, что после всех войн за соль, после бунтов против обложения соли налогом, после миграции целых народов и заключения в тюрьмы сотен тысяч людей, нарушивших законы о торговле солью, в результате открытия новых подземных залежей и усовершенствования технологии добычи цена соли сильно упала. Кроме того, отпала необходимость в соли для предотвращения порчи пищевых продуктов: для хранения продуктов стали применять охлаждение и заморозку. Соль — вещество, которое на протяжении многих веков почитали, за которым охотились, из-за которого развязывали войны, которое часто стоило дороже золота, — стало не просто дешевым и доступным, но и совершенно обыденным.
Глава 16 Хлорорганические соединения
В 1877 году судно “Фригорифик” с грузом аргентинского мяса на борту вышло из Буэнос-Айреса и отправилось во французский Руан. Тот рейс стал историческим: корабль вез охлажденный груз. Началась эпоха холодильников. Отпала необходимость в соли и специях для сохранения свежести продуктов.
Как сохранить холод
Уже четыре тысячи лет назад люди использовали для охлаждения продуктов лед. Он забирал из окружающего пространства тепло, а сам превращался в воду. Ее сливали, а емкость с продуктами снова наполняли льдом. Однако действие холодильников (рефрижераторов) основано не на переходе вещества из твердой фазы в жидкую, а на переходе из жидкого состояния в пар. Жидкость поглощает тепло из окружающей среды и испаряется. Образующийся при этом пар сжимают и переводят обратно в жидкое состояние. Эта стадия сжатия (компрессии) как раз и объясняет приставку “ре” в слове “рефрижератор”: пар возвращается в жидкое состояние, испаряется, вызывая охлаждение, и цикл повторяется снова. Ключевым элементом в осуществлении этого цикла является источник энергии, приводящий в действие компрессор. Старинные ледники, по сути, не были холодильниками. Мы и сегодня часто называем холодильником прибор, который поддерживает холод, не уточняя, каким образом он это делает. В настоящем холодильнике есть хладагент — вещество, которое совершает цикл испарение/сжатие. В 1748 году эффект охлаждения в результате испарения был продемонстрирован с помощью эфира[25], но прошло еще более ста лет, прежде чем машина со сжатым эфиром стала использоваться в качестве холодильника. Около 1851 года шотландец Джеймс Харрисон, эмигрировавший в 1837 году в Австралию, сконструировал компрессионный холодильник на основе эфира для австралийского пивоваренного завода. Харрисон, а также американец Александер Твиннинг, который создал похожую систему приблизительно в то же время, считаются одними из первых конструкторов современных холодильных установок. Еще одним претендентом на звание создателя первой холодильной установки является французский инженер Фердинанд Карре, который в 1859 году предложил использовать в качестве хладагента аммиак. В первых холодильных установках хладагентами служили также хлорметан и диоксид серы. С помощью диоксида серы был залит первый в истории искусственный каток. Эти маленькие молекулы положили конец использованию соли и специй для хранения пищевых продуктов.
В 1873 году Джеймс Харрисон, успешно устанавливавший холодильное оборудование на мясоперерабатывающих и пивоваренных заводах в Австралии, решил установить его и на транспортных судах, чтобы экспортировать австралийское мясо в Великобританию. К сожалению, в море его система компрессии эфира сломалась. В начале декабря 1879 года пароход “Стратлевен” с установкой Харрисона покинул Мельбурн и спустя два месяца достиг Лондона, имея на борту 40 тонн еще замороженной говядины и баранины. В 1882 году аналогичная система была установлена на пароходе “Данедин”. В его трюме в Британию прибыла первая партия замороженной ягнятины из Новой Зеландии. Хотя первым судном-рефрижератором обычно считают “Фригорифик”, это не совсем так. Первым, скорее, следует назвать корабль, снаряженный Харрисоном в 1873 году. Правда, то путешествие не увенчалось успехом. Первое успешное путешествие, пожалуй, совершил пароход “Парагвай”, который в 1877 году доставил из Аргентины в Гавр (Франция) замороженную говядину. Холодильные установки на “Парагвае” были сконструированы Фердинандом Карре, использовавшим в качестве хладагента аммиак. На “Фригорифике” охлаждение осуществлялось за счет циркуляции по трубам воды, которую охлаждали льдом, хранившимся в плотно изолированном помещении. Во время рейса из Буэнос-Айреса во Францию подававший воду насос сломался, и мясо стухло. Вообще говоря, хотя “Фригорифик” совершил свое плавание на несколько месяцев раньше “Парагвая”, его нельзя назвать настоящим рефрижератором. Можно сказать, что это было судно с изолированным трюмом, в котором продукты хранились в замороженном или охлажденном виде за счет запасов льда. “Фригорифик” же был пионером, хотя и неудачливым. Вне зависимости от того, кто был истинным первопроходцем в этой сфере, в начале 80-х годов XIX века проблема транспортировки мяса от мест его производства на перспективные рынки Европы и востока США была решена с помощью внедрения процесса компрессии и испарения хладагентов. Корабли из Аргентины, даже из Австралии и Новой Зеландии могли проделать двух— или трехмесячное путешествие по тропикам. Простой системы с охлажденной водой, как на “Фригорифике”, для этого было бы недостаточно. Механические холодильники становились все надежнее, что расширяло возможности производителей сельхозпродукции. Поэтому система заморозки и охлаждения сыграла важнейшую роль в экономическом развитии Австралии, Новой Зеландии, Аргентины, Южной Африки и других стран. Они не могли воспользоваться своими преимуществами из-за географической удаленности от основных потребительских рынков.
Волшебный фреон
Хладагент должен соответствовать нескольким требованиям. Он должен испаряться в определенном диапазоне температур, переходить в жидкую фазу при компрессии (тоже при заданной температуре) и поглощать достаточно большое количество тепла при испарении. Аммиак, эфир, хлорметан, диоксид серы и другие подобные вещества удовлетворяли этим требованиям, однако они разлагались, или легко загорались, или были ядовиты, или ужасно пахли — либо обладали всеми этими качествами одновременно. Итак, идеального хладагента не существовало, но был огромный спрос на холодильные установки: как промышленные, так и бытовые. Промышленные холодильники, предназначенные для хранения продовольственных товаров для торговли, появились примерно на полвека раньше бытовых холодильников. Первые домашние холодильники появились в 1913 году, а к 1920 году они начали постепенно вытеснять из обихода традиционные ледники, лед для которых покупали на специальных заводах. В некоторых из первых бытовых холодильников шумный компрессор был встроен в основание прибора, отделенное от холодильной камеры. В поисках более безопасного хладагента инженер-механик Томас Мидгли (к тому времени уже синтезировавший тетраэтилсвинец — вещество, которое добавляют в бензин, чтобы сделать двигатели внутреннего сгорания менее шумными) и химик Альберт Хенн, занимавшийся конструированием холодильников в компании “Фриджидэр”, подразделении “Дженерал моторс”, заинтересовались веществами, точка кипения которых находилась в диапазоне температур холодильного цикла. Большинство веществ, удовлетворяющих этому условию, уже использовались в качестве хладагентов либо уже были отвергнуты. Но оставалась одна группа соединений, которые пока никто не опробовал: соединения фтора. Фтор является очень токсичным и химически агрессивным газом, и поэтому на тот момент было синтезировано совсем немного фторсодержащих соединений. Мидгли и Хенн решили синтезировать несколько соединений, содержащих один или два атома углерода и различное число атомов фтора и хлора вместо атомов водорода. Получившиеся соединения — хлорфторуглероды (ХФУ) — превосходно соответствовали всем техническим требованиям, предъявляемым к хладагентам, и, кроме того, были стабильными, негорючими, нетоксичными и дешевыми веществами, почти без запаха. Мидгли представил новый хладагент весьма необычным способом. На заседании Американского химического общества в 1930 году в Атланте (штат Джорджия, США) он налил немного вещества в открытый контейнер, а когда вещество закипело, опустил в контейнер лицо и сделал глубокий вдох. Потом, повернувшись к зажженной на столе свече, он выдохнул, и свеча погасла. Вот такое необычное и весьма наглядное подтверждение безопасности и негорючести нового вещества. Вскоре в качестве хладагентов стал применяться целый ряд хлорфторуглеродов: дихлордифторметан (больше известный под торговым названием фреон-12), трихлорфторметан (фреон-11), а также 1,2-дихлор-1,1,2,2-тетрафторэтан (фреон-114).
Номера фреонов — это код, придуманный Мидгли и Хенном. Первая цифра означает число атомов углерода минус один. Если получается ноль, то его просто не записывают (тогда фреон-12 — это фреон-012). Следующая цифра — число атомов водорода (если таковые имеются) плюс один. Последняя цифра — это число атомов фтора. Все оставшиеся в молекуле атомы — это атомы хлора. Хлорфторуглероды оказались прекрасными хладагентами. Они совершили революцию в производстве холодильных установок и привели к широкому распространению бытовых холодильников, особенно после того, как во всех домах появилось электричество. В начале 50-х годов XX века в развитых странах холодильник стал обычным бытовым прибором. Отпала необходимость покупать еду каждый день. Скоропортящиеся продукты можно было сохранить, а обед приготовить заранее. Расцвело производство замороженных продуктов. Появились новые блюда и новые продукты, большую популярность завоевали замороженные полуфабрикаты. Хлорфторуглероды изменили наше отношение к выбору продуктов, к процессу приготовления пищи и даже к самой пище. Холодильники позволили хранить и перевозить на дальние расстояния термолабильные антибиотики, вакцины и другие лекарственные препараты. Наличие широкого спектра новых хладагентов позволило охлаждать не только еду, но и воздух. Прежде в жару люди ловили ветерок, обмахивались опахалами и разбрызгивали воду. Появление ХФУ способствовало развитию производства кондиционеров воздуха. В тропических регионах и вообще повсюду, где бывает жарко, с появлением кондиционеров дома, госпитали, офисы, предприятия, магазины и машины стали комфортабельнее. Хлорфторуглеродам нашлось и другое применение. Поскольку эти вещества практически не вступают в химические реакции, они являются идеальными пропеллентами (то есть веществами, которыми наполняют аэрозольные баллончики) для всего, что можно использовать в виде спрея. Через маленькое отверстие в баллончике с помощью расширяющихся паров ХФУ можно распылять лак для волос, пену для бритья, одеколон, лосьон для загара, взбитые сливки, полироль, средства для чистки ковров, дезинфицирующие средства для ванн, инсектициды и многое-многое другое. Некоторые ХФУ стали применяться в качестве пенообразователей для производства очень легких и пористых полимеров, которые используются для изготовления упаковочных материалов, изоляционных строительных материалов, пищевых контейнеров и стаканчиков для кофе. Такие ХФУ, как фреон-113, оказались хорошими растворителями. Их используют для очистки печатных плат и других электронных деталей. Замена атома хлора или фтора на атом брома в ХФУ приводит к образованию более тяжелых веществ с более высокой точкой кипения, таких как фреон-13В1 (B обозначает бром), которыми наполняют огнетушители.
В начале 70-х годов XX века в мире ежегодно производилось около миллиона тонн ХФУ и других родственных соединений. Казалось, что это и вправду идеальные молекулы, прекрасно подходящие для решения многих задач и не имеющие недостатков. Казалось, они сделали наш мир лучше.
Темная сторона фреона
Популярность хлорфторуглеродов росла вплоть до 1974 года, когда во время очередного заседания Американского химического общества исследователи Шервуд Роуленд и Марио Молина сообщили неприятные новости. Они обнаружили, что в самой стабильности ХФУ кроется неожиданная опасность. В отличие от менее устойчивых соединений, ХФУ не разрушаются в результате обычных химических реакций, что отчасти и объясняло их столь высокую популярность. ХФУ попадали в нижние слои атмосферы, где они находились несколько лет или даже десятилетий, прежде чем поднимались в стратосферу, где разрушались под действием солнечной радиации. В стратосфере, на расстоянии 15–30 километров от поверхности планеты, располагается озоновый слой. Может показаться, что это довольно толстая прослойка, но если бы озоновый слой находился под тем же давлением, которое существует на уровне моря, его толщина составляла бы всего несколько миллиметров. В стратосфере же разреженный воздух создает столь малое давление, что озоновый слой значительно расширяется. Озон — это соединение, состоящее из атомов кислорода. Единственное различие между молекулами озона и кислорода заключается в количестве составляющих их атомов: формула кислорода — O2, а озона — O3, но свойства этих молекул совсем разные. Сильная солнечная радиация над озоновым слоем расщепляет молекулы кислорода на отдельные атомы.
Атомы кислорода погружаются в озоновый слой, и каждый взаимодействует с молекулой кислорода с образованием молекулы озона.
Внутри озонового слоя молекулы озона распадаются под действием высокоэнергетического ультрафиолетового излучения на молекулы кислорода и атомы кислорода.
После этого два атома кислорода соединяются, образуя молекулу кислорода.
Таким образом, в озоновом слое происходит постоянное образование и расщепление молекул озона. На протяжении тысячелетий этот процесс приходил к равновесию, так что концентрация озона в атмосфере Земли оставалась практически постоянной. Это имеет важные последствия для жизни на Земле: озон поглощает солнечную энергию в определенной части спектра, которая особенно опасна для всего живого. Кто-то сказал, что мы живем под “зонтиком”, защищающим всех нас от смертельно опасной солнечной радиации. Исследования Роуленда и Молины показывали, что атомы хлора ускоряют распад молекул озона. Сначала атомы хлора сталкиваются с молекулами озона, в результате чего образуются монооксид хлора ClO и молекулярный кислород.
Монооксид хлора взаимодействует с атомом кислорода с образованием молекулы кислорода и регенерацией атома хлора.
Роуленд и Молина предположили, что эти реакции могут нарушать равновесие между озоном и кислородом, поскольку они ускоряют распад озона, но не влияют на его образование. Атом хлора, который используется на первой стадии процесса и регенерирует на последней стадии, выступает в роли катализатора, то есть ускоряет процесс, но сам не расходуется. Это и пугает сильнее всего: проблема не только в том, что атомы хлора разрушают озон, но и в том, что они делают это снова и снова. По некоторым оценкам один атом хлора, проникший в верхние слои атмосферы в составе ХФУ, может расщепить более ста тысяч молекул озона, прежде чем потеряет активность. А сокращение озонового слоя всего на ι % способствует повышению уровня пагубной солнечной радиации у поверхности Земли на 2 %. На основании своих расчетов Роуленд и Молина предсказали, что атомы хлора из ХФУ и родственных соединений начинают разрушать озоновый слой. В то время, когда ученые проводили свои эксперименты, ежедневно в атмосферу попадали миллиарды молекул ХФУ. Новость о том, что ХФУ представляют реальную угрозу озоновому слою и, следовательно, здоровью и безопасности всех живых организмов, вызвала определенную реакцию ученых и общественности, однако потребовалось еще несколько лет и многочисленные исследования, прежде чем ХФУ были запрещены — сначала частично, а затем и полностью. На принятие решения о запрещении использования ХФУ повлиял результат, полученный из совершенно неожиданного источника. В 1985 году в Антарктике были проведены исследования, которые продемонстрировали постепенное исчезновение озонового слоя над Южным полюсом. Никто не ожидал, что самая большая “дыра” в озоновом слое может появиться среди зимы над практически необитаемым континентом, где никто не пользуется ни холодильниками, ни лаком для волос. Это открытие означало, что попадание ХФУ в окружающую среду — действительно глобальная проблема. В 1987 году исследовательский самолет, курсировавший в районе Южного полюса, обнаружил в зоне разрежения озонового слоя молекулы монооксида хлора. Это было экспериментальным подтверждением предсказаний Роуленда и Молины (которые через восемь лет после этого, в 1995 году, получили Нобелевскую премию по химии за предсказание долгосрочного воздействия ХФУ на состояние стратосферы и окружающей среды). В 1989 году вступил в силу Монреальский протокол по веществам, разрушающим озоновый слой. Этот договор обязал все подписавшие его страны сначала постепенно, а потом и полностью отказаться от использования ХФУ. На сегодняшний день в холодильных установках вместо хлорфторуглеродов используются гидрофторуглероды и гидрохлорфторуглероды. Эти вещества не содержат хлора либо легче расщепляются в атмосфере и значительно реже, чем более стабильные хлорфторуглероды, достигают стратосферы. Однако эти вещества не такие эффективные хладагенты, и теперь для осуществления холодильного цикла требуется примерно на 3 % больше энергии. До сих пор в атмосфере остаются миллиарды молекул ХФУ. Не все страны подписали Монреальский протокол, но даже в тех странах, которые это сделали, в эксплуатации находятся миллионы холодильников с ХФУ, а еще сотни тысяч уже не используются, но продолжают выпускать в атмосферу молекулы ХФУ, которые медленно, но неумолимо уничтожают озоновый слой. Воздействие этих когда-то столь популярных веществ может сказаться через несколько столетий. Увеличение интенсивности высокоэнергетической составляющей солнечной радиации приводит к повреждению клеток живых организмов и их ДНК, что, в свою очередь, способствует возникновению вредных мутаций, а также рака.
Чем опасен хлор?
Хлорфторуглероды — не единственная группа молекул, которые сначала казались чрезвычайно полезными, но через какое-то время продемонстрировали свою токсичность и потенциальную опасность для здоровья людей и состояния окружающей среды. Интересно, однако, что “темную сторону” среди всех органических соединений чаще всего показывают соединения хлора. Эта двуликость свойственна даже элементарному хлору. Миллионы людей во всем мире нуждаются в хлоре для очистки источников воды. Для этой цели пригодны и другие вещества, но они гораздо дороже. В прошлом столетии был сделан очень важный шаг в сторону обеспечения всего мирового населения чистой питьевой водой, хотя проблема чистой воды все еще не решена полностью. Без использования хлора нам бы не удалось сильно продвинуться в этом направлении. Однако хлор ядовит, что ясно видно, например, из исследований немецкого химика Фрица Габера, синтезировавшего аммиак из атмосферного азота и изучавшего действие отравляющих газов (мы говорили об этом в главе 5). Первым отравляющим веществом, которое использовалось в качестве оружия массового поражения во время Первой мировой войны, был зеленовато-желтый газ хлор. Первые симптомы при отравлении хлором — затруднение дыхания и удушье. Хлор оказывает сильное раздражающее действие на клетки и может вызвать смертельно опасный отек легких и бронхов. После хлора в качестве отравляющих веществ были применены горчичный газ (иприт) и фосген, молекулы которых также содержат хлор и оказывают не менее ужасное действие на организм, чем сам хлор. Хотя уровень смертности при отравлении горчичным газом не очень высок, вдыхание этого вещества приводит к тяжелому и длительному нарушению зрения и дыхания.
Отравляющие газы, использовавшиеся во время Первой мировой войны; атомы хлора выделены жирным шрифтом.
Фосген — очень токсичный бесцветный газ. Он самый коварный среди всех этих ядов. Он действует не мгновенно, так что человек продолжает им дышать, постепенно вдыхая смертельную дозу. Смерть обычно наступает в результате удушья, вызванного отеком легких и дыхательных путей.
|
||||
Последнее изменение этой страницы: 2016-06-23; просмотров: 519; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.62.99 (0.019 с.) |