Хлор в пестицидах: от блага до бича 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Хлор в пестицидах: от блага до бича



 

Другие хлорсодержащие соединения попали в окружающую среду не случайно, а были целенаправленно внесены в землю в составе пестицидов. Этот процесс происходил во многих странах, на протяжении многих лет и в крупном масштабе. Самые эффективные синтетические пестициды содержат хлор. Сначала считалось, что лучшими пестицидами являются самые стабильные, которые не разлагаются в окружающей среде. В таком случае результат однократного применения может длиться несколько лет. Так и оказалось, но удалось предсказать не все долгосрочные последствия применения пестицидов. Хлорсодержащие пестициды сослужили человечеству важную службу, но в некоторых случаях вызвали неожиданные и очень неблагоприятные последствия.

Несоответствие между пользой и вредом легче всего проиллюстрировать на примере такого хлорсодержащего соединения, как ДДТ. Это сокращенное название дихлордифенилтрихлорэтана — производного 1,1-дифенилэтана.

 

1 1,1-Дифенилэтан

 

 

Дихлордифенилтрихлорэтан, или ДДТ

 

Впервые ДДТ был синтезирован в 1874 году. Но в качестве инсектицида его стали применять только в 1942 году в рамках дезинфекционных мероприятий по предотвращению заболеваемости сыпным тифом, а также для остановки распространения малярийных комаров. На юге Тихого океана американские солдаты широко применяли “клоповые бомбы” — баллончики с аэрозолем ДДТ. Это создавало двойную нагрузку на окружающую среду, поскольку в воздухе оказывался не только ДДТ, но и ХФУ.

Уже к 1970 году, когда объем производства ДДТ составил три миллиона тонн, стали появляться данные, указывавшие на неблагоприятное влияние этого соединения на окружающую среду, а также на появление устойчивых к нему видов насекомых. Влияние ДДТ на обитателей дикой природы, в частности, на таких хищных птиц, как орлы, соколы и ястребы, связывают не столько с самим веществом, сколько с основными продуктами его распада. И ДДТ, и продукты его распада являются жирорастворимыми соединениями, которые накапливаются в тканях животных. У птиц продукт распада ДДТ ингибирует действие фермента, поставляющего кальций для яичной скорлупы. Поэтому птицы, подвергшиеся действию ДДТ, откладывают яйца с очень тонкой скорлупой, которая лопается преждевременно. Уже в конце 40-х годах было отмечено резкое снижение численности орлов, соколов и ястребов. Нарушение равновесия между полезными и вредными насекомыми, о котором писала в 1962 году Рэйчел Карсон в книге “Безмолвная весна”, в значительной степени было связано с неумеренным использованием ДДТ.

Во время Вьетнамской войны (1962–1970) над лесами Юго-Восточной Азии были развеяны миллионы литров дефолианта — “агента оранж” (смеси хлорсодержащих гербицидов 2,4-Д и 2,4,5-Т), который уничтожал листву деревьев, скрывавшую партизан.

 

2,4-Д

 

 

2,4,5-Т

 

Сами эти вещества не очень токсичны, однако 2,4,5-Т содержит примесь побочного продукта, который стал причиной множества случаев пороков развития, рака, заболеваний кожи, нарушений иммунитета и многих других проблем, которые до сих пор преследуют жителей Вьетнама. Химическое название ответственного за эти ужасы вещества — 2,3,7,8-тетрахлордибензодиоксин. Часто его называют просто диоксином, хотя это неверно: диоксины — это целая группа веществ, далеко не все из которых опасны.

 

2,3,7,8-тетрахлордибензоксидиоксин, или диоксин

 

Диоксин считается самым ядовитым среди всех созданных человеком ядов, хотя он в миллион раз менее токсичен, чем самый ядовитый природный яд — ботулинический токсин. В 1976 году на химическом предприятии в итальянском городе Севезо произошел взрыв, в результате которого в воздух попало некоторое количество диоксина. Последствия аварии для местного населения и животных были ужасными: хлоракне, пороки развития, рак. Обсуждения в прессе, последовавшие после этой трагедии, напугали людей и убедили их в том, что все диоксины являются чрезвычайно опасными.

К таким же неожиданным последствиям, как применение дефолианта, привело использование чрезвычайно популярного в 50-х и 60-х годах XX века антисептика гексахлорофена. Это вещество добавляли в мыло, шампуни, лосьоны после бритья, дезодоранты, жидкости для полоскания рта и многие аналогичные продукты.

 

Гексахлорофен

 

Гексахлорофен также входил в состав материалов, использовавшихся для производства товаров для детей: подгузников, талька и других гигиенических средств. Исследования, проведенные в 1972 году на лабораторных животных, показали, что гексахлорофен вызывает нарушение работы мозга и нервной системы. В конечном итоге гексахлорофен был запрещен к использованию в составе детских товаров и гигиенических средств, отпускаемых без рецепта. Однако поскольку это вещество чрезвычайно эффективно действует против определенных видов бактерий, его назначают для борьбы с угревой сыпью, а хирурги используют его для обработки рук перед операцией.

 

Усыпляющие молекулы

 

Но не все хлорорганические соединения оказались опасными для здоровья человека. Гексахлорофен оказался хорошим антисептиком, а другая маленькая хлорсодержащая молекула произвела революцию в медицине. До середины XIX века хирургические операции осуществлялись без наркоза (правда, иногда в пациентов вливали определенную дозу алкоголя — в надежде, что это ослабит агонию). Говорят, что некоторые хирурги перед операцией тоже слегка выпивали, чтобы превозмочь себя и причинить пациенту неизбежную боль. Однако в октябре 1846 года зубной врач из Бостона Уильям Мортон успешно продемонстрировал применение эфира в качестве средства для наркоза при проведении хирургической операции. Новость о том, что эфир позволяет проводить хирургические операции без боли, распространилась очень быстро, и вскоре начался поиск других веществ, которые можно было бы использовать для анестезии.

Шотландский врач и профессор медицины и акушерства в Университете Эдинбурга Джеймс Юнг Симпсон придумал забавный способ тестирования веществ, являвшихся кандидатами в анестетики. Рассказывают, что он просил принять участие в тестировании гостей, приходивших к нему на ужин. Очевидно, что хлороформ CH3Cl, впервые синтезированный в 1831 году, тестирование прошел. После успешного эксперимента Симпсон появился в столовой в окружении своих гостей, все еще находившихся в слегка заторможенном состоянии. Симпсон не стал терять время и вскоре начал применять хлороформ на своих пациентах.

 

Хлороформ

 

 

Эфир (диэтиловый эфир)

 

Хлороформ в качестве анестетика имеет ряд преимуществ перед эфиром: он действует быстрее, лучше пахнет и требуется в меньшей концентрации. Кроме того, после наркоза пациенты приходят в себя быстрее и легче. А еще эфир очень легко воспламеняется. Он образует взрывоопасную смесь с кислородом, так что малейшая искра, даже от соударения двух медицинских инструментов, может стать причиной взрыва.

Наркоз под действием хлороформа очень скоро начал применяться в хирургической практике. Даже при том, что некоторые пациенты умирали, риск считался невысоким. В те времена к хирургическому вмешательству прибегали только в крайнем случае, а пациенты нередко умирали от болевого шока, так что уровень смертности от наркоза считался вполне приемлемым. Хирургические операции тогда были короткими (это было важно, поскольку они делались без наркоза), так что пациенты подвергались действию хлороформа недолго. Во время Гражданской войны в Америке хирурги провели в полевых условиях почти семь тысяч операций, при этом, благодаря использованию хлороформа, во время операций умерло менее сорока человек.

Итак, наркоз при хирургических операциях получил повсеместное признание, однако его использование при родах вызывало споры. Медицинской эта проблема была лишь отчасти. Некоторые врачи действительно не были уверены в том, что наркоз не нанесет вреда здоровью ребенка, поскольку под наркозом родовая деятельность женщины ослабевает, и ребенок дышит слабее. Но дело было не только в обеспокоенности состоянием здоровья матери и ребенка. Религия оправдывала боль. В Книге Бытия говорилось: “В муках будешь рожать детей своих”. Буквальная интерпретация этого библейского пассажа означает, что любая попытка ослабить боль при родах противоречит божьей воле. Еще более радикальная позиция по данному вопросу заключалась в том, что боль при родах является расплатой за грех, вероятно, за грех совокупления (вообще говоря, единственный способ зачать ребенка в середине XIX века).

Однако в 1853 году королева Виктория родила своего восьмого ребенка, принца Леопольда, под наркозом. Ее решение вновь воспользоваться хлороформом при рождении девятого (и последнего) ребенка, принцессы Беатрисы, в 1857 году ускорило распространение этой практики, несмотря на множество критических возражений в адрес врачей королевы, опубликованных в авторитетном медицинском журнале “Ланцет”. В Британии и в большей части стран Европы при родах стали применять хлороформ, в Северной Америке чаще прибегали к эфиру.

В начале XX века появился новый метод обезболивания при родах, который быстро завоевал популярность в Германии, а затем и в других европейских странах. Этот так называемый поверхностный наркоз достигался при использовании сочетания скополамина и морфина (об этих веществах мы говорили в главах 12 и 13). В начале схваток женщине вводили очень небольшую дозу морфина. Он несколько ослаблял боль, хотя и не полностью, особенно если роды были долгими и тяжелыми. Скополамин вызывал сон и, что было важнее для врачей, не давал женщине вспомнить, как проходили роды. Поверхностная анестезия считалась лучшим средством обезболивания при родах, так что в 1914 году в США началась общественная кампания, требовавшая разрешить этот способ наркоза. Национальная ассоциация в поддержку поверхностного наркоза распространяла брошюры и организовывала лекции, посвященные пропаганде достоинств нового метода обезболивания.

Некоторые опасения, высказанные отдельными врачами, публика объясняла желанием бесчувственных врачей сохранить контроль над своими пациентками. Поверхностный наркоз стал политическим оружием, частью более широкого движения, которое в итоге позволило женщинам добиться избирательных прав. Сегодня кажется странным, что женщины поверили заявлениям о том, что поверхностный наркоз устраняет страдание и позволяет матери проснуться посвежевшей и радостно встретиться со своим малышом. Женщины, как и прежде, испытывали боль, как если бы им не вводили никакого лекарства, но только вызванная скополамином амнезия ликвидировала все воспоминания о родах. Поверхностный наркоз создавал ложное впечатление о спокойных и безболезненных родах.

Но хлороформ, несмотря на неоценимую помощь хирургам и их пациентам, показал и свои негативные качества. Теперь известно, что он нарушает работу печени и почек, а в высоких дозах повышает вероятность развития рака. Он повреждает роговицу глаза, приводит к появлению трещин на коже, а также вызывает утомляемость, тошноту и нарушение сердечного ритма. Под воздействием высокой температуры, кислорода воздуха и света хлороформ превращается в хлор, оксид углерода, фосген и (или) хлористый водород, причем все эти соединения токсичны или химически агрессивны. Теперь при работе с хлороформом принято использовать защитную одежду и оборудование, чего никогда не делали в те дни, когда хлороформ приобрел популярность. Но хотя негативные свойства хлороформа стали известны уже более ста лет назад, сотни тысяч людей, благодарно вдыхавших его сладковатые пары перед операцией, считали его скорее подарком небес, чем творением зла.

 

Без сомнения, многие хлорорганические соединения можно назвать злом, хотя честнее было бы обвинять не химические вещества, а людей, которые намеренно сбрасывали ПХД в реки, противились запрещению ХФУ даже после демонстрации их разрушающего воздействия на озоновый слой, необдуманно применяли пестициды (легальные и запрещенные) и ставили прибыль выше безопасности.

Сегодня мы используем сотни хлорорганических соединений, которые не являются ядами, не разрушают озон, не наносят вреда окружающей среде, не приводят к возникновению рака и никогда не использовались в качестве оружия. Эти вещества находят применение у нас дома и на производстве, в школах и в больницах, в машинах, на кораблях и на самолетах. Они не вызывают шумихи и не причиняют вреда, но их нельзя назвать веществами, которые изменили мир.

По иронии, именно те хлорорганические соединения, которые нанесли наибольший ущерб или имели возможность его нанести, как раз и способствовали важнейшим переменам в обществе. Изобретение анестетиков положило начало развитию современной хирургии. Установка холодильного оборудования на кораблях, грузовиках и в поездах открыла новые возможности для развития рынка и способствовала быстрому расцвету многих развивающихся стран. С появлением бытовых холодильников хранение пищевых продуктов стало удобным и безопасным. Мы привыкли к комфорту, который обеспечивают кондиционеры, без боязни пьем воду и даже не задумываемся о том, что трансформатор может загореться. Во многих странах полностью или почти полностью исчезли болезни, передающиеся через укусы насекомых. Так что вклад этих молекул никак нельзя игнорировать.

 

 

Глава 17

Молекулы против малярии

 

Слово “малярия” происходит от итальянских слов mal aria и буквально означает “плохой воздух”. Столетиями люди считали, что причина этой болезни кроется в ядовитых испарениях, поднимающихся от низин и болот. Возможно, малярия, возбудителем которой является микроскопический паразит, — самый страшный убийца в истории человечества. Даже в наши дни ежегодно регистрируется от трехсот до пятисот миллионов случаев заболевания, и два-три миллиона людей в год умирают от малярии (в основном маленькие африканцы). Напомним, вспышка лихорадки Эбола в Заире в 1995 году за шесть месяцев унесла двести пятьдесят жизней — в двадцать раз меньше, чем количество африканцев, умирающих от малярии за день. Малярия передается гораздо легче, чем СПИД. Расчеты показывают, что носитель ВИЧ в среднем заражает 2-10 человек, тогда как человек, заразившийся малярией, передает инфекцию сотням других людей.

Паразитические организмы, вызывающие малярию у человека, относятся к роду Plasmodium и четырем видам: P. vivax, P falciparum, P. malariae и P. ovale. Все они вызывают типичные симптомы малярии: жар, озноб, сильные головные и мышечные боли, причем все эти симптомы могут возвращаться даже через несколько лет. Наиболее высокой летальностью отличается форма заболевания, которую вызывает Pfalciparum. Остальные формы малярии иногда называют “доброкачественными”, хотя они также наносят огромный ущерб. Приступы лихорадки при малярии обычно возникают с периодичностью в два или три дня. Однако при летальной форме, вызванной P falciparum, такие эпизоды лихорадки встречаются реже, а по мере прогрессирования заболевания у пациента возникает желтуха, он впадает в летаргическое состояние, сознание путается, наступают кома и смерть.

Возбудитель малярии передается от одного человека к другому через укусы малярийного комара (Anopheles). Чтобы отложить яйца, самке комара нужно питаться кровью. После того как она укусит человека, зараженного малярией, возбудитель малярии продолжает свой жизненный цикл в ее организме и может перейти к другому человеку при следующем укусе. Дальше жизненный цикл паразита продолжается в печени новой жертвы. Примерно через неделю паразит выходит в кровь, поражает эритроциты и ждет укуса нового комара.

Сейчас малярию считают заболеванием тропических или субтропических регионов, однако совсем недавно она была широко распространена и в зоне умеренного климата. Упоминания о лихорадке (скорее всего, малярийной) встречаются в китайских, индийских и египетских текстах тысячелетней давности. Англичане называли эту болезнь болотной лихорадкой, поскольку она была широко распространена в низменных прибрежных районах Англии и Голландии. В этих местах множество водоемов со стоячей водой — идеальные условия для размножения комаров. Болезнь встречалась и севернее: в Скандинавии, на севере США, в Канаде. С малярией были знакомы даже шведы и финны, жившие по берегам Ботнического залива — совсем близко от Северного полярного круга. Для многих народов, населявших побережья Средиземного и Черного морей, малярия была эндемическим заболеванием.

Всюду, где жил малярийный комар, была малярия. В Риме болотная лихорадка была настолько обычным заболеванием, что каждый раз, когда для избрания очередного папы собирался конклав, в ожидании выборов несколько кардиналов умирали от малярии. На Крите, Пелопонесском полуострове и во многих других районах с выраженным чередованием засушливых и влажных периодов в летние месяцы люди перегоняли скот на возвышенности. Это делалось не только для того, чтобы сменить пастбища, но и для того, чтобы уйти подальше от болотистых малярийных районов.

Малярия не щадила ни богатых, ни бедных. Скорее всего, именно от нее умер Александр Македонский, а также знаменитый исследователь Африки Дэвид Ливингстон. Очень большой урон малярия наносила армии. Солдаты спали в палатках, под самодельными укрытиями или под открытым небом, предоставляя комарам прекрасную возможность напиться крови. Половина солдат, участвовавших в Гражданской войне в США, страдала от ежегодных приступов малярийной лихорадки. Были ли больны малярией солдаты наполеоновской армии? Это вероятно, особенно летом и в начале осени 1812 года, когда Наполеон наступал на Москву.

Малярия оставалась серьезной проблемой еще в XX веке. В 1914 году в США было зафиксировано свыше полумиллиона случаев заболевания малярией. В 1945 году около миллиарда людей во всем мире жили в малярийных районах, в некоторых странах было инфицировано до 10 % населения. Там из-за малярии на рабочих местах отсутствовало до 35 % трудящихся, а в школах — до 50 % учеников.

 

Хинин — природный антидот

 

Учитывая приведенную невеселую статистику, не приходится удивляться, что столетиями люди пытались отыскать средство для борьбы с малярией. Были найдены три таких средства. Это совсем разные молекулы, которые, как ни странно, имеют отношение к тем молекулам, о которых мы говорили в предыдущих главах. Первая из них — молекула хинина.

В Андах, на высоте от тысячи до трех тысяч метров над уровнем моря, растет дерево, в коре которого содержится алкалоид. Не будь на свете этой молекулы, наш мир был бы другим. Существует около тридцати видов этого дерева, и все они относятся к роду Cinchona. Родиной цинхоны, или хинного дерева, являются восточные склоны Анд — от юга Колумбии до Боливии. Особые свойства коры этого дерева издавна были известны местным жителям, которые пили отвар коры, чтобы излечиться от лихорадки.

Есть множество рассказов о том, как европейцы узнали о противомалярийных свойствах коры хинного дерева. Согласно одной версии, испанский солдат, страдавший от приступа малярийной лихорадки, попил воды из озера, вокруг которого росли хинные деревья, и чудесным образом излечился. Другая история рассказывает о донье Франсиске Энрикес де Рибера, графине Чинчон, муж которой был вице-королем Перу в 16291639 годах. В начале 30-х годов графиня тяжело заболела малярией. Традиционные европейские лекарства ей не помогали, и врач решил прибегнуть к местному средству — коре хинного дерева. Считается, что цинхона получила свое название в честь графини Чинчон (в несколько измененном звучании), которая выздоровела благодаря хинину.

Эти истории иногда приводят в качестве доказательства того, что малярия существовала в Новом Свете до прибытия туда европейцев. Но тот факт, что индейцы знали о способности дерева кина излечивать от лихорадки, не означает, что малярия была болезнью американских аборигенов. Колумб достиг берегов Нового Света за сто лет до того, как донья Франсиска излечилась от лихорадки. За это время комары вполне могли перенести инфекцию от европейцев к местному населению. Нет никаких доказательств того, что приступы лихорадки, от которых страдали местные жители до прибытия конкистадоров, были вызваны малярией. Сейчас историки медицины и антропологи почти едины в своем мнении о том, что малярия пришла в Новый Свет из Африки и Европы. Источником инфекции могли быть как европейцы, так и африканские рабы. В середине XVI века в Америку уже активно доставляли рабов из Западной Африки, где всегда было много больных малярией. В 30-х годах, когда графиня Чинчон заболела малярией, на территории Америки уже сменилось несколько поколений потомков прежних европейцев и африканских рабов, которые составляли источник инфекции.

Новость о том, что кора хинного дерева излечивает от малярии, быстро достигла Европы. В 1633 году священник Антонио де ла Каланча описал замечательные свойства коры “лихорадочного дерева”, и другие братья иезуитского ордена в Перу начали использовать хинную кору для лечения и предотвращения малярии. В 40-х годах брат Бартоломе Тафур привез в Рим некоторое количество коры, и слух о ее замечательных свойствах быстро разнесся среди священников. Собравшийся в 1655 году конклав отличался от всех предыдущих тем, что сохранился в полном составе. Вскоре иезуиты стали вывозить из Нового Света большое количество коры и распространять ее по всей Европе. Однако, несмотря на свою прекрасную репутацию, “иезуитский порошок” не завоевал популярности в протестантской Англии. Оливер Кромвель отказался принимать лекарство папистов и умер от малярии в 1658 году.

Наконец, в 1670 году в Англии появилось новое популярное средство от малярии. Лондонский врач и аптекарь Роберт Тальбор, предупреждавший об опасностях, связанных с приемом “иезуитского порошка”, начал распространять собственное секретное средство. Лекарством Тальбора пользовались при английском и французском дворе. Благодаря чудесному средству Тальбора сам король Англии Карл II, а также сын французского короля Людовика XIV смогли пережить жестокие приступы малярии. Только после смерти Тальбора стал известен состав его чудесного лекарства: это была все та же кора хинного дерева. Вполне вероятно, что пойти на обман Тальбора заставило желание обогатиться, но верно также и то, что этот обман сохранил жизнь многим протестантам. То, что хинин лечил от болезни, которую на протяжении многих веков называли болотной лихорадкой, подтверждает, что эта болезнь была ничем иным, как малярией.

Кору хинного дерева применяли для лечения от малярии (а также от нарушения пищеварения, жара, облысения, рака и многих других заболеваний) на протяжении трех последующих столетий. Но только в 1735 году французский ботаник Жозеф де Жюссье, изучавший дождевые леса в высокогорьях Южной Америки, выяснил, что источником коры являются различные виды широколиственного дерева, достигающего в высоту двадцати метров. Эти виды деревьев принадлежат к семейству Rubiaceae, к которому относится и кофейное дерево. Кора хинного дерева всегда пользовалась большим спросом, и ее получение превратилось в целую индустрию. Кору можно снимать, не срубая дерева, но гораздо проще и прибыльнее срубить дерево и содрать с него всю кору. По этой причине к концу XVIII века ежегодно вырубалось около двадцати пяти тысяч хинных деревьев.

Стоила кора хинного дерева дорого, источники ее, по-видимому, были ограничены, поэтому перед учеными встала задача выделить, идентифицировать и синтезировать действующее вещество — противомалярийную молекулу. Возможно, впервые хинин был выделен еще в 1792 году, хотя и не в чистом виде[26]. Систематические исследования состава хинной коры начались в 1810 году, но только в 1820 году Жозефу Пеллетье и Жозефу Каванту удалось выделить и очистить хинин. За столь важный вклад в науку этим французским ученым были выплачены десять тысяч франков.

 

Хинное дерево, из коры которого получают хинин. Фотография любезно предоставлена Л. Кейт Уэйд

 

Быстро стало ясно, что среди почти тридцати алкалоидов, содержащихся в хинной коре, активным ингредиентом является именно хинин. Полностью структура этого вещества была определена только в XX веке, поэтому более ранние попытки синтезировать хинин были обречены на провал. Одну из таких попыток предпринял молодой английский химик Уильям Перкин (мы рассказывали о нем в главе 9), который хотел соединить две молекулы аллилтолуидина с тремя атомами кислорода и получить хинин.

 

Это происходило в 1856 году. Ученые еще не знали, что, хотя формула хинина (C20H24N2O2) примерно соответствует удвоенной формуле аллилтолуидина (C10H13N), реакция идти не может. Теперь нам известна структура обоих веществ:

 

Перкин не смог получить хинин, зато ему удалось получить краситель мовеин, приличные деньги, а также сделать первый шаг в развитии такой науки, как синтетическая органическая химия.

По мере того как Промышленная революция в XIX веке способствовала расцвету Великобритании и других стран Европы, стали появляться деньги, которые можно было направить на облагораживание заболоченных территорий. Проведение дренажных работ позволяло превратить бывшие болота в плодородные земли. Исчезали водоемы со стоячей водой, необходимой для размножения комаров, и число случаев заболевания малярией стало сокращаться. Но потребность в хинине не уменьшилась. Напротив, с расширением колониальной экспансии в Азии и Африке для предотвращения малярии требовалось все большее количество препарата. Привычка британцев принимать хинин в целях профилактики превратилась в традиционный вечерний джин с тоником (джин добавляли, чтобы заглушить горький вкус раствора хинина). Британская империя нуждалась в хинине, поскольку во многих важнейших ее колониях (в Индии, Малайзии, Африке и на Карибских островах) малярия была эндемическим заболеванием. Колонии Голландии, Франции, Испании, Португалии, Германии и Бельгии тоже располагались в малярийных районах. Потребность в хинине была огромной.

Поскольку способа получения синтетического хинина пока не было найдено, приходилось искать другие решения. Один возможный путь состоял в выращивании хинного дерева за пределами бассейна Амазонки. Прибыль от продажи хинной коры была настолько высока, что Боливия, Перу, Эквадор и Колумбия, стремясь сохранить свою монополию, запретили экспорт целых растений и их семян. В 1853 году директор ботанического сада на острове Ява голландец Карл Юстус Хасскарл умудрился тайно вывезти из Южной Америки мешок семян Cinchona calisaya. На Яве деревья хорошо росли, но, к огорчению Хасскарла и всех голландцев, этот вид хинного дерева содержал сравнительно мало хинина. Такая же история произошла с англичанами, которые посадили в Индии и на Цейлоне украденные семена Cinchona pubescens. Деревья росли, но в их коре было слишком мало хинина, чтобы его производство могло себя оправдать.

В 1861 году австралиец Чарльз Леджер, который несколько лет занимался добычей коры хинного дерева, уговорил боливийских индейцев продать ему семена того вида хинного дерева, в котором содержалось много хинина. Леджер хотел продать семена англичанам, но правительство Великобритании отклонило его предложение: видимо, англичане больше не верили в успех этого предприятия. А вот правительство Голландии купило фунт семян хинного дерева (вида, который позднее назвали Cinchona ledgeriana) приблизительно за двадцать долларов. Примерно за двести лет до этого британцы сделали удачный выбор, обменяв изоэвгенол из мускатного ореха на Манхэттен, но в этот раз, без сомнения, выиграли голландцы. Эту сделку назвали самой удачной сделкой в истории, поскольку выяснилось, что содержание хинина в коре Cinchona ledgeriana достигает 13 %.

Семена Cinchona ledgeriana посеяли на Яве и стали тщательно ухаживать за подрастающими деревцами. Когда деревья выросли и с них начали собирать кору, экспорт хинной коры из Южной Америки стал постепенно сокращаться. Тот же сценарий повторился пятнадцать лет спустя, когда контрабандный вывоз семян другого южноамериканского дерева, Heveabrasiliensis, положил конец монополии южноамериканских стран в производстве каучука (глава 8).

В начале 30-х годов XX века 95 % хинина получали с плантаций на Яве. Эти плантации приносили голландцам небывалую прибыль. Молекула хинина (или, точнее, монополия в производстве хинина) чуть было не изменила ход Второй мировой войны. В 1940 году Германия оккупировала Голландию и конфисковала европейский запас хинина со складов в Амстердаме. А в 1942 году японцы захватили Яву, и у союзников практически не осталось источников противомалярийного средства. Группа американских ботаников под руководством Раймонда Фосберга из Смитсоновского института была командирована в Восточные Анды за корой хинного дерева, по-прежнему произраставшего в этих местах. Хотя ученым удалось собрать несколько тонн коры, им не попалось ни единого дерева вида Cinchona ledgeriana, с которым так повезло голландцам. Хинин был необходим союзникам, воевавшим в тропиках, поэтому опять чрезвычайно остро встал вопрос о возможности синтеза хинина или какой-либо иной молекулы с противомалярийными свойствами.

Хинин — это производное хинолина. В 30-х годах XX века было синтезировано несколько производных хинолина, которые оказались эффективны в борьбе с острыми приступами малярии. Активный поиск противомалярийных препаратов во время Второй мировой войны показал, что наиболее эффективным синтетическим производным хинолина является 4-аминохинолин, теперь известный как хлорохин. Впервые это вещество было синтезировано немецкими химиками еще до войны.

 

В молекуле хинина (слева) и хлорохина (справа) присутствует хинолиновый фрагмент (обведен окружностью и отдельно показан в центре). Стрелка указывает на атом хлора в молекуле хлорохина.

 

В молекуле хлорохина есть атом хлора. Таким образом, это еще одно хлорорганическое соединение, оказавшее человечеству чрезвычайно большую услугу. На протяжении сорока с лишним лет хлорохин использовался в качестве безопасного и эффективного противомалярийного препарата, который хорошо переносился большинством пациентов и оказывал слабое токсическое действие по сравнению с другими синтетическими хинолинами. К большому сожалению, в последние десятилетия начали активно распространяться штаммы возбудителя малярии, устойчивые к действию этого препарата. Так как эффективность хлорохина падает, приходится использовать более токсичные препараты, такие как фансидар и мефлохин, которые иногда оказывают серьезное побочное действие.

 

Синтез хинина

 

Теоретически обоснованные попытки синтеза хинина начались, по-видимому, в 1944 году, когда Роберт Вудворд и Уильям Доэринг из Гарвардского университета превратили одно производное хинолина в другую молекулу, которую, как считалось, химики умели превращать в хинин еще в 1918 году. Казалось бы, был установлен полный путь синтеза хинина. Но выяснилось, что это не так. Опубликованные данные были настолько скудными, что трудно было понять, что же именно было сделано исследователями прежде.

Химики-органики говорят, что окончательное доказательство структуры — это синтез вещества. Другими словами, вне зависимости от того, сколько существует доказательств правильности предполагаемой химической структуры вещества, окончательным доказательством может быть только получение этого вещества каким-либо независимым путем. И вот в 2001 году, спустя сто сорок пять лет после попытки Перкина, почетный профессор Колумбийского университета (Нью-Йорк) Гилберт Сторк вместе с группой сотрудников осуществил такой синтез. Они начали с другого производного хинолина, шли иным путем и выполнили каждую стадию процесса самостоятельно.

Хинин представляет собой достаточно сложную по химической структуре молекулу, а при определении структуры каждой сложной природной молекулы перед учеными встает очень трудная задача определения расположения межатомных связей. В изображенной на рисунке справа молекуле хинина при атоме углерода, присоединенном к хинолиновому фрагменту, имеется атом водорода, который выступает над плоскостью страницы (это показано с помощью жирной клиновидной черточки), и OH-группа, которая уходит за плоскость страницы (на рисунке показано пунктирной линией).

 

Структура молекулы хинина

 

Ниже представлены варианты возможного пространственного расположения этих связей при атоме углерода.

 

Хинин (слева) и его очень близкая версия (справа), которая в условиях лабораторного синтеза образуется одновременно с хинином

 

Часто бывает, что в природе существует только одно соединение из подобной пары, но в условиях химического синтеза всегда получается равное количество обоих веществ. Подобные соединения настолько похожи, что их разделение обычно представляет собой чрезвычайно длительный и трудоемкий процесс. В молекуле хинина есть еще три атома углерода, относительно которых возможна такая инверсия связей, и при синтезе получаются все варианты соединений, так что всего процедуру разделения нужно проводить четыре раза. Сторк с сотрудниками эту трудность преодолели, но в 1918 году ученые скорее всего даже не подозревали о существовании такой проблемы.

В настоящее время хинин собирают на плантациях в Индонезии, Индии, а также Заире и некоторых других африканских странах, и (в меньшем объеме) на родине хинного дерева — в Перу, Боливии и Эквадоре. Основное применение коры — изготовление хинной настойки, тоника и других горьких напитков, а также антиаритмического препарата хинидина. В тех районах, где распространился резистентный к хлорохину штамм возбудителя малярии, люди по-прежнему употребляют хинин.

 



Поделиться:


Последнее изменение этой страницы: 2016-06-23; просмотров: 244; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.186.92 (0.052 с.)