Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Отдельные представители альдегидов

Поиск

Формальдегид при обычных условиях представляет собой газ с резким неприятным (острым) запахом, хорошо растворимый в воде; 40 %-ный водный раствор формальдегида, называемый формалином, широко применяется в медицинской практике.

При статичном состоянии раствора формальдегида в нем постепенно идут процессы окисления – восстановления. Вследствие дисмутации формалин обычно наряду с формальдегидом содержит метиловый спирт и муравьиную кислоту. Реакция дисмутации катализируется щелочами.

При концентрировании формалина, а также при длительном хранении формальдегида, особенно в условиях низкой температуры, в нем образуется белый осадок полимера формальдегида, называемого параформальдегидом или просто параформом.

nH2C=О ↔ (Н2СО)n

Полимеризацию формальдегида можно представить следующим образом. Гидратированные молекулы формальдегида отщепляют воду и образуют цепи большей или меньшей длины. Молекулы параформа содержат от трех до восьми молекул формальдегида (как это показал еще А. М. Бутлеров), а при определенных условиях (при очень низкой температуре) – гораздо больше.

Низкая температура способствует полимеризации формальдегида, и поэтому формалин не следует хранить при температуре ниже 10–12 °C. В то же время высокая температура способствует быстрому улету50б чиванию формальдегида из раствора. Процесс деполимеризации и обратной полимеризации лежит в основе возгонки параформа.

Медицинское применение формальдегида основано на его способности свертывать белки. Свертываются от формальдегида и белковые вещества бактерий, что обусловливает их гибель. Одно из важнейших медицинских применений формальдегида – использование с целью дезинфекции, т. е. уничтожения болезнетворных микроорганизмов. Парами формалина (при его кипячении) окуривают дезинфицируемые помещения, растворами формальдегида обрабатываются руки хирургов, хирургические инструменты и т. д. Растворы формальдегида применяют для консервирования (сохранения) анатомических препаратов. Большие количества формальдегида используются в синтезе пластмасс. Из формальдегида получают медицинский препарат гексаметилентетрамин, или уротропин. Этот препарат получается при взаимодействии формальдегида (или параформа) с аммиаком:

6CH2О + 4NH3 → (CH2)6N4 + 6H2О.

Рациональное название «гексаметилентетрамин», было дано А. М. Бутлеровым в связи с наличием в молекуле шести метиленовых групп и четырех атомов азота. А. М. Бутлеров впервые получил уротропин и изучил его.

При нагревании раствора уротропина в присутствии кислот он гидролизуется с образованием исходных продуктов – формальдегида и аммиака:

(CH2)6N4 + 6H2О → 6CH2О + 4NH3.

Ронгалит, ацетальгид, глиоксоль

Ронгалит, или формальдегидсульфоксилат натрия, применяющийся как для синтеза лекарственных препаратов (например, новарсенола), так и в технике в качестве восстановителя, также является производным формальдегида. Для получения ронгалита на формальдегид действуют гидросульфитом натрия, в результате чего получается гидросульфитное соединение формальдегида. Далее гидросульфитное соединение формальдегида восстанавливают цинковой пылью.

Уксусный альдегид (ацетальдегид, или этанал) в промышленном масштабе получают обычно дегидрированием паров этилового спирта при действии катализатора (меди): от спирта отщепляются два атома водорода. Важным методом получения ацетальде-гида является также реакция Кучерова – присоединение воды к ацетилену.

В лабораторных условиях ацетальдегид обычно получают из спирта путем окисления его дихроматом калия в кислой среде.

Ацетальдегид представляет собой летучую жидкость. В больших концентрациях он обладает неприятным удушливым запахом; в малых концентрациях имеет приятный запах яблок (в которых он и содержится в небольшом количестве).

При добавлении к ацетальдегиду капли кислоты при комнатной температуре он полимеризуется в параль-дегид; при низкой температуре ацетальдегид полиме-ризуется в метальдегид – твердое кристаллическое вещество.

Паральдегид является циклическим тримером (СН3СНО)3, метальдегид – циклическим тетрамером (СН3СНО)4, он иногда применяется в быту в качестве горючего под названием «сухого спирта». Паральдегид ранее применялся в качестве снотворного средства.

Важным производным ацетальдегида является трихлорацетальдегид, или хлорал. Хлорал представляет собой тяжелую жидкость. Он присоединяет воду с образованием твердого кристаллического вещества гидрата хлорала, или хлоралгидрата. Хлоралгидрат представляет собой один из весьма немногочисленных примеров прочных гидратов альдегида. Хлоралгидрат легко (уже на холоде) разлагается щелочами с образованием хлороформа и соли муравьиной кислоты. Хлоралгидрат применяется в качестве снотворного средства.

Глиоксаль является простейшим представителем диальдегидов – соединений с двумя альдегидными группами.

Бензойный альдегид, или бензальдегид в природе встречается в виде гликозида амигдалина, содержащегося в горьких миндалях, листьях лавровишни и черемухи, косточках персиков, абрикосов, слив и т. д. Под влиянием фермента эмульсина, а также при кислотном гидролизе амигдалин расщепляется на синильную кислоту, бензальдегид и две молекулы глюкозы.

В качестве промежуточного продукта гидролиза амигдалина можно выделить бензальдегидциангид-рин, который можно рассматривать как продукт взаимодействия бензальдегида и HCN.

В горькоминдальной воде Aqim атудаа1агит атага-rum – препарате из горьких миндалей – синильная кислота содержится главным образом в виде бензаль-дегидциангидрина.

Кетоны

Кетонами называются вещества, содержащие карбонильную группу – С(О)-, связанную с двумя радикалами. Общая формула кетонов R-C(O)-R'.

Радикалы могут быть алифатическими (предельными или непредельными), алициклическими, ароматическими.

Ароматические кетоны можно разделить на две подгруппы:

1) смешанные жирно-ароматические, содержащие один ароматический остаток;

2) чисто ароматические кетоны, содержащие два ароматических остатка.

Номенклатура и изомерия

Обычно кетоны называют по радикалам, входящим в их молекулу, прибавляя слово кетон. Так, простейший представитель Н3С-С(О) – СН3 называют диметилкетоном, Н3С-С(О) – С2Н5 – метилэтилкетоном, Н3С-С(О) – С6Н5 – метилфенилкетоном, С6Н-С(О) – С6Н5 – дифенилкетоном и т. д.

По международной номенклатуре наименования ке-тонов производят от названий соответствующих углеводородов, прибавляя к этому названию окончание – он. Так, диметилкетон будет называться про-паноном, метилэтилкетон – бутаноном и т. д.

Для обозначения положения карбонильной группы нумеруют атомы углерода, начиная с того конца, к которому ближе находится карбонильная группа, и, называя кетон, соответствующей цифрой обозначают место карбонила.

Некоторые кетоны имеют, кроме того, и свои эмпирические названия. Например, диметилкетон обычно называют ацетоном, метилфенилкетон – ацетофено-ном, дифенилкетон – бензофеноном.

Изомерия кетонов зависит от положения карбонильной группы в цепи, а также от изомерии радикалов. Способы получения

Кетоны можно получить способами, аналогичными тем, которыми получают альдегиды.

1. Окисление вторичных спиртов.

2. Получение из дигалогенопроизводных, у которых оба атома галогена находятся у одного и того же вторичного атома углерода.

3. Получение из кальциевых солей карбоновых кислот путем их сухой перегонки. Так, из ацетата кальция получается ацетон.

Для получения смешанных кетонов (с разными радикалами) берут соли соответствующих кислот, содержащих нужные радикалы.

При сухой перегонке дерева получаются некоторые кетоны, например ацетон и метилэтилкетон.

Ароматические кетоны удобно получать реакцией Фриделя—Крафтса, действуя на хлорангидрид жирной или ароматической кислоты ароматическим углеводородом в присутствии хлорида алюминия.

Физические свойства

Простейший кетон – ацетон – жидкость. Последующие представители также являются жидкостями. Высшие алифатические, а также ароматические кето-ны – твердые вещества. Простейшие кетоны смешиваются с водой. Все кетоны хорошо растворимы в спирте и эфире. Простейшие кетоны обладают характерным запахом.

Химические свойства кетонов

Кетоны обладают рядом характерных для карбонильной группы свойств, сближающих их с альдегидами. В то же время кетоны не имеют характерного для альдегидов водородного атома, связанного с карбо-нилом, поэтому не дают целого ряда окислительных реакций, очень характерных для альдегидов. Кетоны представляют собой вещества менее реакционноспо-собные, чем альдегиды. Как упоминалось ранее, многие реакции присоединения к альдегидам протекают вследствие сильной поляризации карбонильной группы по ионному механизму.

Радикалы, связанные с карбонильной группой, обладают так называемым положительным индукционным эффектом: они повышают электронную плотность связи радикала с другими группами, т. е. как бы гасят положительный заряд углеродного атома карбонила.

Вследствие этого карбонилсодержащие соединения по убыли их химической активности можно расположить в следующий ряд:

формальдегид – ацетальдегид – ацетон.

Существует и другая – стереохимическая – причина меньшей реакционной способности кетонов по сравнению с альдегидами. Положительно заряженный углеродный атом карбонильной группы альдегидов связан с одним радикалом и атомом водорода, имеющим малый объем. У кетонов такой атом углерода связан с двумя радикалами, часто оба они весьма объемисты. Таким образом, нуклеофильная частица (ОН, OR и др.), уже приближаясь к карбонильной группе кетонов, может встретить «стерические препятствия». Далее, в результате присоединения ну-клеофильной частицы к углероду карбонила и соответствующих атомов или групп атомов к кислороду карбонила происходит изменение гибридизации электронов этого углерода: sp2 – sp3. В трехмерном пространстве около «бывшего» карбонильного углерода альдегида должны расположиться три более или менее объемистые группы и атом водорода.

В то же время в случае кетона все 4 группы, располагающиеся вокруг этого углеродного атома, будут достаточно объемистыми.

1. Отношение к окислению: кетоны не окисляются теми слабыми окислителями, которые легко окисляют альдегиды. Так, например, кетоны не дают «реакции серебряного зеркала», не окисляются гидроокисью меди и фелинговым раствором. Однако такими сильными окислителями, как КМп04 или хромовая смесь, кетоны можно окислить. При этом углеродная цепь ке-тона разрывается у карбонильной группы с образованием кислот с меньшим числом атомов углерода по сравнению с исходным кетоном. Это также отличает кетоны от альдегидов.

Реакция окислительного расщепления кетонов имеет большое значение для установления их строения, так как по образующимся кислотам можно судить о положении карбонильной группы в молекуле кетонов.

2. Реакции карбонильной группы: ряд реакций, характерных для карбонильной группы альдегидов, протекает совершенно аналогично и с кетонной карбонильной группой.



Поделиться:


Последнее изменение этой страницы: 2016-06-23; просмотров: 853; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.108.233 (0.007 с.)