Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вариации угловой скорости вращения Земли

Поиск

Неравномерность скорости суточного вращения Земли была обнаружена еще в начале ХХ века. Эти вариации, по мнению В.М. Киселева (1980), выражаются, в основном, тремя способами: 1.Ось вращения меняет свою ориентацию в пространстве; 2. Ось вращения Земли меняет свое положение относительно поверхности Земли; 3. Угловая скорость вращения Земли переменна относительно мгновенной оси.

Изменения пространственного положения земной оси обусловлены, в основном, гравитационным воздействием Луны, Солнца и планет Солнечной системы на Землю. Эта величина достаточно точно рассчитывается. Значительно сложнее дело обстоит со вторым и третьим аспектами, которые проявляются, соответственно, в виде движения полюсов относительно поверхности Земли и вариаций угловой скорости вращения Земли, рис.42. Движения полюсов можно разделить на три составляющие: движение с периодом в 14 месяцев переменной амплитуды, равной 0,1², открытое Чандлером; движение с годичным периодом и амплитудой 0,08², соответствующей
2,5 м на земной поверхности, и третье – очень медленное и неправильное вековое движение, в среднем, около 0,003² или 10 см в год, (А.А. Михайлов, 1984).


Рис. 42. Схема прецессии и нутации Земли
http://vivovoco.ibmh.msk.su/VV/JOURNAL/NATURE/08_04/UNSTABLE.H

Чандлерово движение отражает свободное перемещение полюсов. На сегодня нет однозначного ответа, объясняющего причины таких колебаний, при этом существуют различные гипотезы, в том числе, связывающие эти колебания с сильными землетрясениями и извержениями вулканов. Годичные колебания связывают с метеорологическими явлениями – отложениями снега и таянием снегов, скоплением зимой воздушных масс над северо-восточной Азией, когда атмосферное давление становится выше обычного. Вековое движение полюса не подчиняется четким закономерностям и на сегодня, не имеет однозначного объяснения (А.А. Михайлов 1984).

Между тем, эти типы движений не рассматриваются в данной работе, поэтому основное внимание будет уделено неравномерности в скорости суточного вращения Земли. Обычно выделяют три основных аспекта в изменениях длительности земных суток: 1) Вековые изменения на 1-2 мс за 100 лет; 2) Сезонные вариации с амплитудой около 0,5 мс; 3) Нерегулярные изменения от года к году, величина которых более чем на порядок превосходит вековые изменения.

Вековые изменения длительности суток связаны, преимущественно, с действием приливообразующих сил, возникающих в результате гравитационного взаимо­действия Земли с Луной и Солнцем. Сезонные вариации угловой скорости вращения Земли обусловлены изменениями зональной циркуляции атмосферы в течение года и, частично, лунными приливами.

Впервые на существование нерегулярных изменений скорости вращения Земли обратил внимание еще Ньютон в 1875 году, исследуя движение Луны. Наличие нерегулярных изменений во вращении Земли, стало очевидным после работ Де Ситера и Спенсера Джонса, которыми были обнаружены одновременные изме­нения в среднем движении: Луны, Солнца, Меркурия, Венеры, Марса и спутников Юпитера, пропорциональные их средним движениям. Однако, до настоящего вре­мени не сложилось однозначного мнения относительно причин нерегулярного изменения угловой скорости вращения Земли (В.М. Киселев, 1980).

На рис.43 показан график нерегулярных вариаций длительности земных суток с 1850 по 2000 годы, сглаженный 5-ти летними скользящими средними. Различные исследователи пытались выдвигать концепции, объясняющие механизм нере­гу­ляр­ных изменений суточного вращения Земли. Так, в работах У. Манк (1964) и С. Чатзман (1960) рассматривались исследования взаимодействия геомагнитного поля с межпланетной средой и возможность влияния этого взаимодействия на вариации угловой скорости вращения Земли. В работе Ю.А. Бильде (1976) показано, что заметные изменения скорости вращения Земли могут возникнуть, когда частота изменения внешнего магнитного поля (например: ионосферного происхождения) максимально близка к частоте вращения Земли. В работе Дж. Гинзберг (1972) приводятся оценки вращательного момента, возникающего в результате взаимодействия солнечного ветра с геомагнитным полем, при этом по­казано, что этот момент недостаточен для объяснения наблюдаемых изме­не­ний длительности земных суток. В 1965 году была высказана гипотеза о том, что импульсные изменения скорости суточного вращения Земли, могут быть обуслов­лены электромагнитным взаимодействием Земли с потоками солнечной плазмы, обладающими без силовой конфигурацией магнитных полей, названной М – элементами (В.И. Афанасьев, 1965 г.). Эта идея впоследствии была развита в работе Н.П. Бенькова (1976), где показано, что если в солнечном ветре существуют плазменные образования с характеристиками М -элементов, то с их помощью можно объяснить внезапные изменения скорости суточного вращения Земли.

П.Н. Кропоткин, Н.Н. Парийский и другие исследователи, связывают наблюдаемые изменения скорости суточного вращения Земли с возможными изменениями ее радиуса и формы: П.Н. Кропоткин (1984), Н.Н. Парийский (1984), В.Е. Хаин, Ш.Ф. Мехтиев, Э.Н. Халилов (1984, 1986, 1987, 1988, 1989 гг.).


Рис. 43. График вариаций длительности суток с 1850 по 2000 годы,
построенный по данным В.М. Кисилева (1980)
Y – график вариаций длительности суток;
Ось γ, (ms) – изменения длительности суток.

Так, в работе П.Н. Кропоткина (1984) указано, что периодические изменения радиуса Земли, являются первопричиной, как цикличности в проявлениях тектонических процессов, так и вариаций угловой скорости вращения Земли (Кропоткин, 1984). Одновременно, эта же идея выдвигается В.Е. Хаиным,
Ш.Ф. Мехтиевым и Э.Н. Халиловым (1984), где также, как и в работе П.Н. Кропот­кина (1984), делается вывод о периодических изменениях радиуса Земли, при этом, в периоды сжатия Земли, уменьшение радиуса происходит за счет активизации процесса субдукции и замедления процесса спрединга, а в периоды расширения Земли – происходит обратный процесс.

Примечательно, что в работе П.Н. Кропоткина (1984), установлена хорошая корреляция между Чандлеровыми движениями, угловой скоростью вращения Земли и сейсмической активностью, что позволяет увязать все эти процессы в единую, логически обоснованную, систему.

Теоретические расчеты упругой деформации Земли и соответствующих измене­ний ее момента инерции, ее вращения и силы тяжести на поверхности, были сделаны Н.Н. Парийским еще в 1954 г. На основе проведенных вычислений
Н.Н. Парийский пришел к выводу, что ни эффекты, вызванные солнечной актив­ностью, ни атмосферные явления, не могут вызвать наблюдаемых изменений угловой скорости вращения Земли. По его мнению, эти вариации могут являться результатом глобальных деформационных процессов в Земле, приводящих не только к периодическому изменению ее радиуса, но также к сложному изменению ее формы. Судя по его описанию этого процесса, он должен носить квадру­поль­ный характер, т.е. Земля должна «менять свою форму, расширяясь в средних и полярных областях и на порядок больше сжимаясь в экваториальных» (Н.Н. Парийский, 1984).

Приведенный в работе Д.Д. Иваненко (1984) результат исследованийнерегуляр­ных изменений силы тяжести, соответствует ситуации, когда сжатию Земли в месте измерения, будет соответствовать общее увеличение момента инерции Земли, что возможно только, если в другом месте земного шара происходит рас­ши­рение. По мнению В.М. Федорова, существуют некоторые особенности в распре­делении катастрофических землетрясений в суточном цикле вращения Зем­ли. Эти особенности объясняются причинно-следственной зависимостью распре­деления землетрясений от динамики составляющих приливообразующих сил Луны и Солнца в связи с суточным вращением Земли.

При исследованиях коррелляционной связи глобальной сейсмической актив­ности Земли со скоростью ее вращения, группа ученых (Фридман, Клименко, Поля­ченко, 2005) пришла к интересным выводам: 1. Корреляция между частотой по­верх­ностных землетрясений и угловым ускорением Земли монотонно растет с ростом магнитуды; 2. Корреляции между сейсмической активностью и изме­не­ниями угловой скорости вращения Земли в зонах субдукции, направленных вдоль широты и вдоль меридиана качественно отличаются. В результате своих иссле­до­ваний, авторы делают заключение, в соответствии с которым: «за изменение годовой сейсмической активности и за изменение угловой скорости вращения Земли отвечают процессы сжатия и растяжения земной коры в направлении, поперечном оси вращения».

В последних работах известного исследователя неравномерности вращения Земли Н.С. Сидоренкова, сделаны интересные выводы о связи нестабильности вра­щения Земли с гидрометеорологическими процессами. Эти исследования вош­ли в основу запатентованного учеными (Н.С. Сидоренков, П.Н. Сидоренков, 2002) способа прогноза гидрометеорологических характеристик. В работах Н.С. Сидо­рен­кова отмечается, что между приливными колебаниями скорости вращения Земли и изменениями синоптических процессов в атмосфере имеется стати­сти­чески значимое соответствие. Естественные синоптические периоды совпадают с режи­мами вращения Земли. Приливные колебания скорости ее вращения обус­лов­лены лунно-солнечными зональными приливами. По мнению указанных исследователей, эволюция синоптических процессов в атмосфере происходит не только за счет внутренней динамики климатической системы, но и под управ­лением лунно-солнечных зональных приливов (Сидоренков, 2004).

Проведенные исследования рядом ученых (Жарков, Пасынок, 2004) позволили придти к выводу, что вариации угловой скорости вращения Земли имеют очень сложный характер, при этом в них наблюдаются гармоники совершенно разных порядков. Накладываясь друг на друга, эти гармоники создают весьма сложную картину изменения длительности земных суток. Исходя из этого, В.Н. Жарков и С.Л. Пасынок попытались разработать теорию вращения Земли, назвав ее новой теорией нутации. В соответствии с данной теорией, нутация вращения Земли пред­ставляется, как достаточно сложная, но стройная система, в которой су­ществует своеобразная иерархия множества наложенных друг на друга нутацион­ных движений оси вращения разных порядков.

На наш взгляд, вариации суточного вращения Земли, несомненно, связаны с процессами деформации и изменениями масс в системе ядро-литосфера – гид­росфера-атмосфера. Подтверждением вышесказанного могут являться изменения угловой скорости вращения Земли и смещение оси Земли после катастрофических землетрясений, например, в Индонезии (Суматра, 26 декабря 2004 года) и Чили (27 февраля 2010 г.). В результате землетрясения в Индонезии 26 декабря 2004 года сместилось положение Северного географического полюса. Он сдвинулся на 2,5 сантиметра в направлении 145 градуса восточной долготы. Изменение скоро­сти вращения планеты вызвало увеличение продолжительности суток на 2,68 микросекунды, а перемещение масс привело к изменению формы планеты. В результате землетрясения пропорции планеты изменились на одну десятимил­лиард­ную, то есть Земля стала менее сплюснутой и более компактной.

В качестве примера отклонений угловой скорости вращения Земли от прог­но­зи­руемых значений приводится график, составленный Н.В. Сидоренковым (2009), рис.44.

Между тем, проведенное нами сравнение графика изменений длительности суток с графиком солнечной активности (солнечной постоянной) позволило получить интересные результаты, рис.45. Сразу обращает на себя внимание наличие общих тенденций в характере изменений длительности суток и кривой, огибающей мак­симальные значения вариаций солнечной постоянной. Существование корреля­цион­ной связи между вариациями солнечной постоянной и изменением длитель­ности суток может иметь физическое обоснование. Мы хотим провести логи­ческую цепочку. Если солнечная активность оказывает влияние на геодина­ми­ческие процессы, а также на процессы в гидросфере (например, таяние льдов, изменения уровня воды в океанах и морях) и атмосфере, то это должно приводить перераспределению масс в указанных слоях Земли, что должно изменить момент инерции и угловую скорость вращения Земли. Безусловно, данный вопрос требует более тщательного изучения.


Рис. 44. Измеренные (пунктир) и прогнозируемые (красная линия) приливные
колебания скорости вращения Земли с 01 октября 2006 г. по 31 декабря 2007 г.
(Н.С. Сидоренков, 2009 г.)
По оси ординат указаны отклонения угловой скорости вращения в 10^-10.
Для совпадения обеих шкал ко всем измеренным значениям
прибавлена постоянная величина 150*10^-10.
(http://geophyslab.srcc.msu.ru/article.php?story=20090505132607712)


Рис. 45. Сравнение графиков изменений длительности земных суток и солнечной
активности (солнечной постоянной), составил Э.Н. Халилов, 2010 г.
Ось Sa – значения солнечной постоянной;
Ось ms – значения изменений длительности суток в ms;
Графики: желтым – график вариаций солнечной постоянной;
голубым – график изменений длительности земных суток;
сиреневым – график, огибающий максимальные значения вариаций
солнечной постоянной.

СОЛНЕЧНО-ЗЕМНЫЕ СВЯЗИ

Наибольшее энергетическое влияние в космическом пространстве на нашу планету оказывает Солнце. Даже приблизительные оценки показывают, что запасов тер­мо­ядерн­ого топлива в недрах Солнца достаточно для того, чтобы поддерживать его физическое состояние неизменным, в течение 1011лет. Солнце ежегодно излучает энергию, равную 3х1033 кал, являясь источ­ником полного электро­­магнитного излучения и меж­пла­нет­ного облака плазмы, быстрых электронов, солнечных космических лучей и т.д. На­и­боль­шая энергия теряется Солнцем в виде волно­вого излучения (Ю.И. Витинский, 1972, 1973, 1983), (О.Г. Шамина, 1981). Полный поток энергии, излучаемый Солнцем в пространство, определяется экспериментально, исходя из потока энергии, приходящего на единицу площади земной поверхности и называется солнечной постоянной (солнечная постоянная в среднем равна 1,95 кал/см2∙мин), или около 1360 Вт/м2, (Е.А. Макарова 1972), причем полный поток лучистой энергии равен 3,8х1026 Дж/с.

Признаком усиления солнечной активности служит появление на его поверх­ности солнечных пятен. В 1908 году Хейл обнаружил, что пятна обладают магнитным полем, напряженность которого достигает 2000-4000 гаусс, в то время, как напряженность общего магнитного поля Солнца не превышает один гаусс. Пятна в начале солнечного цикла появляются на широтах 30o-40o, смещаясь затем к экватору с юга и с севера, достигая максимального числа около 10o-20o, после чего, число пятен уменьшается В.М. Киселев (1980). Как показывают результаты исследований, продолжительность дрейфа солнечных пятен к экватору равна, примерно, 11 годам. В конце каждого 11-летнего цикла, меридиональное поле у полюсов меняет свою полярность. Таким образом, магнитный цикл Солнца равен 22 годам.

Факт изменения числа солнечных пятен со средней периодичностью 11 лет был установлен в середине прошлого столетия Г. Швабе и Р. Вольфом.

Г. Бэбкок и Р. Лейтон (1961), (1969) предложили модель, объясняющую на­ли­чие 22-летнего магнитного солнечного цикла. По их мнению, всплывание магнитной силовой трубки к поверхности фотосферы сопровождается появлением вначале одного пятна – ведущего, а затем – второго. В соседних 11-летних циклах полярность ведущих пятен имеет разный знак.

Одним из наиболее распространенных индексов солнечной активности является относительное число солнечных пятен. Р.Вольф предложил определять индекс солнечной активности по следующей формуле:

W = k (10g + f) (1)

где W – число Вольфа; g – число групп пятен на видимом солнечном диске;
f – число пятен (включая ядра и поры) во всех группах. Значение коэффициента k зависит от многих факторов, включая особенности методики наблюдений, условий видимости в момент наблюдения, индивидуальных особенностей наблюдателя и др.

Другим индексом солнечной активности является суммарная площадь солнечных пятен, исправленная за перспективное сокращение по формуле:

(2)

где S – площадь 1-го пятна; θ = arc sin (ri/R); R – радиус видимого солнечного диска; ri - расстояние от его центра до рассматриваемого пятна.

Между S и W существует статистическая связь с коэффициентом корреляции +0,85, (В.М. Киселев, 1980). Уравнение регрессии S и W имеет вид (3) (Ю.И. Витинский, 1976):

S = 16,7 W (3)

Существует еще несколько индексов солнечной активности, рассмотренных в работе Ю.И. Витинского (1973).

На рис. 46. приведен график изменений чисел Вольфа с 1700 г. по 2000 г.
Общепринята нумерация одиннадцатилетних циклов солнечной активности, в которой нулевой номер присвоен 11-летнему циклу с максимальным значением в 1750 году. Средняя продолжительность 11-летнего цикла считается равной 11,1 года. Однако длительность 11-летнего цикла существенно варьирует в реаль­ности, причем при определении по эпохам минимумов, период циклов варьирует от 9,0 до 13,6 лет, а по эпохам максимумов, от 7,3 до 17,1 года (Ю.И. Витинский, 1976).

В то же время, если наличие 11-летних и 22-летних циклов солнечной активности приз­нано многими исследователями, то циклы с более длительными периодами вызывают много споров. Это связано с ненадежностью данных наблюдений за солнечной активностью на глубину более чем 200 лет.

Д. Шове на основе анализа исторических сведений о наблюдениях солнечных пятен и полярных сияний приводит данные, позволяющие качественно судить об изменениях солнечной активности за последние 2000 лет (Ю.И. Витинский, 1973). Данные Д. Шове подтверждают реальность наличия в изменениях чисел Вольфа цик­ла с периодом 80-90 лет, а также позволяют выделить цикл со средней про­дол­жительностью 554 года (Ю.И. Витинский, 1976).


Рис. 46. График изменения чисел Вольфа (W)
По данным Центра Анализа Данных (SIDC),
Королевской Обсерватории Бельгии.


Рис. 47. График изменения чисел Вольфа (W) с 2000 по май 2010 года
По данным Центра Анализа Данных (SIDC), Королевской Обсерватории Бельгии.
(http://sidc.oma.be/html/wolfjmms.html)

Попытка установить такую характеристику солнечной активности, в которой не преобладала бы 11-летняя цикличность, была сделана А. Стойко и Н. Стойко (1969). Ими были использованы для характеристики солнечной активности значения площади коротко живущих солнечных пятен W1, изменения которых за время с 1900 по 1963 гг. были сопоставлены с вариациями суточного вращения Земли. Эти два явления коррелируются

К = (+08); (+09).

На рис.47 показаны изменения солнечной активности с 2000 года по май 2010 года.

5.4. Взаимосвязь солнечной активности с
геодинамическими процессами

В последние десятилетия стало очевидным, что значимость влияния Солнечной активности на земные процессы значительно обширнее и глубже, чем ранее представлялось. Так Б.М. Владимирский (2002) в своей работе пытается, на наш взгляд, вполне правомерно, увязать многие высокочувствительные физические и химические процессы на Земле с влиянием различных компонентов солнечной активности. Приводятся интересные примеры влияния гелиосферных пара­метров на техногенные процессы.

Вулканическая активность

Попытки выявления статистической связи между солнечной активностью и вул­каническими проявлениями были сделаны многими учеными: А.И. Абдурахманов (1976); Н.К. Булин (1982); Я.А. Гаджиев (1985); Ш.Ф. Мехтиев, Э.Н. Халилов (1984, 1985); С.В. Цирель (2002); В.Е. Хаин, Э.Н. Халилов (2008, 2009) и др.

Так, А.И. Абдурахманов, П.П. Фирстов и В.А. Широков высказали предположение о связи вулканических извержений с 11-летней цикличностью солнечной актив­ности. По мнению авторов, годы, неблагоприятные для извержений вулканов, лежат в окрестности максимума солнечной активности, тогда как наиболее бла­го­приятные для извержений годы лежат вблизи минимума солнечной активности, в основном, в середине и конце спада солнечных циклов (А.И. Абдурахманов, 1976).

В работах ряда исследователей (Ш.Ф. Мехтиев, Э.Н. Халилов, 1987г.; В.Е. Хаин, Э.Н. Ха­лилов, 2008, 2009 гг.) было показано, что солнечная активность не одина­ково действует на землетрясения и извержения вулканов, размещенных в различных геодинамических зонах – в поясах сжатия и растяжения Земли. Они раз­делили все землетрясения и вулканы в зависимости от их приуроченности к поясам сжатия Земли (зоны субдукции и коллизии литосферных плит) и к поясам растяжения Земли (рифтовые зоны). Результаты исследований показали, что в периоды повышения солнечной активности повышается активность, преиму­щест­венно, землетрясений поясов сжатия Земли и снижается активность поясов растя­жения Земли. Авторы пришли к выводу, что в результате не одно­вре­менности процессов растяжения и сжатия, Земля испытывает периодические дефор­мации и изменения радиуса, что отражается в изменениях угловой скорости вращения Земли и вариациях уровня мирового океана (В.Е. Хаин, Э.Н. Халилов, 2008, 2009).

Представляет интерес первичный анализ возможной корреляционной взаимо­связи солнечной активности с вулканической активностью Земли. В качестве основного параметра солнечной активности нами был взят график солнечной постоянной. Именно этот параметр, на наш взгляд, наиболее полно отражает объективное поступление солнечной энергии в космическое пространство, в том числе на Землю. На рис.48 приведено сравнение графиков солнечной постоянной и чисел извержений вулканов, сглаженных 5-ти летними скользящими средними. Оба рисунка идентичны и различаются только графическим стилем для удобства восприя­тия. Можно заметить определенную корреляцию между 11-летними цик­лами солнечной активности и циклами вулканической активности. Наибольшее совпадение наблюдается в 14, 16, 17, 18, 20, 22 и 23 циклах солнечной активности. Но самым интересным, на наш взгляд, является полное совпадение общего харак­тера прямолинейных трендов солнечной и вулканической активности. При­мерно, в 1950 году угол прямолинейных трендов в обоих процессах резко умень­шается, то есть рост вулканической активности становится менее интенсивным. Этот факт может быть еще одним свидетельством возможного влияния солнечной активности на геодинамическую активность Земли.


Рис. 48. Сравнение графика солнечной активности (солнечной постоянной)
и чисел извержений вулканов, сглаженных 5-летними скользящими средними
(Составил Халилов Э.Н., 2010 г.)
Красным – Солнечная активность (Солнечная постоянная); синим и голубым – график
числа извержений вулканов, сглаженный 5-ти летними средними; зеленным, желтым и
белым – линии, отражающие общий характер в изменениях параметров на
всех графиках.

Установление статистической связи между временем активизации вулканов и солнечной активностью позволяет предположить наличие подобной связи и между солнечной активностью и сейсмичностью Земли. Предпосылкой к такому предположению является общеизвестный факт наличия геодинамической и корреляционной связи между вулканизмом и сейсмичностью.

Сейсмическая активность

Изучению статистических связей между параметрами солнечной и сейсмической активности посвящено ряд работ: А.Д. Сытинский (1963-1998); П.М. Сычев (1964); John F. Simpson (1968); О.В. Лусманашвили (1972, 1973); Ф.А. Макадов (1973); Ю.Д. Калинин (1973, 1974); Грибин (1974); Г.Я. Васильева (1975); P. Velinov (1975); H. Kanamori (1977); В.Д. Талалаев (1980); N. V. Kulanin (1984); Ю.Д. Буланже (1984); Ш.Ф. Мехтиев, Э.Н. Халилов (1984, 1985); Jakubcova and M. Pick (1987); A.D. Sytinskii (1989); R.M.C Lopes, S.R.C. Malin, A. Mazzarella (1990); O.A. Khachay (1994);

L.N. Makarova, Gui-Qing Zhang (1998); A.V. Shirochkov(1999); X. Wu, W. Mao, Y.Huang (2001); И.В. Ананьин, А.О. Фадеев (2002); K. Schulenberg (2006); S.D. Odintsov, G.S. Ivanov-Kholodnyi and K. Georgieva (2007); В.Е. Хаин, Э.Н. Халилов (2008, 2009) и др.

Г.Я. Васильева и В.И. Кожанчиков на основании исследования около 2000 земле­тря­сений различных регионов Земли за период одного цикла солнечной актив­ности с 1962 по 1973 гг. пришли к выводу, что число поверхностных земле­тря­сений увеличивается с усилением солнечной активности, а число глубо­ко­фокусных – уменьшается в эпоху максимума солнечной активности. Сейсмическая актив­ность для всех землетрясений, как в годы максимума, так и минимума солнечной активности на 10-30% выше, когда планета пересекает проекцию галак­тического магнитного поля на плоскость эклиптики. Утверждается, что земле­трясения имеют электромагнитную природу и связаны со структурой магни­тосферы Г.Я. Васильева (1975). В работе Ю.Д. Буланже (1984) сопостав­ляется число землетрясений в сейсмоактивных зонах СССР с солнечной актив­но­стью, на основе чего также предполагается наличие связи между этими явле­ниями. Ю.Д. Калинин, сопоставляя данные о землетрясениях за периоды 1897-1958 гг. и 1963-1968 гг. с солнечной активностью, отмечает, что области повы­шен­ной сейсмической активности последовательно появляются внутри 11-лет­него солнечного цикла на географических широтах, все более удаленных от север­ного полюса. Предполагается влияние на сейсмическую активность солнечного ветра Ю.Д. Калинин (1973).

В последующей работе Ю.Д. Калинин (1974), развивая предложенную гипотезу, указывает, что изменения солнечной активности обусловливают нерегулярные колебания угловой скорости вращения Земли, что в свою очередь влияет на сейсмическую активность.

В работе О.В. Лусманашвили (1972), отмечается возможность влияния активности Солнца на распределение землетрясений Кавказа. Рассматривая землетрясения Кав­каза с 1900 по 1970 гг., О.В. Лурсманашвили приходит к выводу, что суще­ст­вует тесная связь, с одной стороны, между сейсмической активностью Кавказа и колебанием уровня Каспийского моря и, с другой стороны, между изменением уровня моря и активностью Солнца. Сравнение спектров активности Солнца и повторяемости сильных землетрясений Кавказа показало их высокое сходство (О.В. Лусманашвили, 1972, 1973).

А.Д. Сытинский в ряде работ (1963- 1998), П.М. Сычев (1964), В.Д. Талалаев (1980) так же пытаются установить связь сейсмичности Земли с солнечной активностью. Ими, в частности, отмечается, что общая сейсмичность Земли, выраженная через суммарную энергию землетрясений и число катастрофических землетрясений за год, зависит от фазы 11-летнего солнечного цикла. Наиболее высокая сейс­ми­че­ская активность соответствует эпохам максимума и минимума 11-летнего сол­неч­ного цикла. Указано также, что землетрясения главным образом происходят через 2-3 дня после прохождения активной области через центральный солнечный меридиан. В работе А.Д. Сытинского (1973) отмечено, что связь сейсмичности с солнечной активностью осуществляется через общепланетарные атмосферные процессы. Механизм зависимости состоит в том, что в связи с усилением солнеч­ной активности происходит возмущение квазистационарного состояния атм­о­сферы, приводящее к перераспределению массы атмосферы по земному шару, т.е. к перемещению центра тяжести системы Земля – атмосфера, и, следовательно, к нарушению фигуры Земли.

Так, А.Д. Сытинский (1998) отмечает, что полученная им ранее зависимость сейсмичности от 11-летнего цикла была проверена и подтверждена опытным прогнозированием общей сейсмичности Земли и отдельных ее регионов. Были предсказаны максимумы сейсмической активности Земли за период с 1963 по 1995 гг. В своих работах И.В. Ананьин и А.О. Фаддеев (2002) приходят к выводу о наличии корреляционной связи между вариациями сейсмической активности, средними годовыми температурами на поверхности Земли и солнечной актив­ностью. Между тем, они рассматривают эту связь, как возможное обоснование влияния солнечной активности, как на среднегодовые температуры, так и на сейсмическую активность.

Так, в работе И.К. Грибина (1974) рассматриваются причины возникновения разрушительного землетрясения в районе разлома Сан-Андреас в Калифорнии в 1982 году. В качестве причин, которые являются его спусковым механизмом, отмечается противостояние основных планет Солнечной системы и увеличение солнечной активности с периодом в 11 лет. О влиянии 11-летнего цикла солнеч­ной активности на сейсмичность Земли отмечено также в работе Ф.А. Макадов (1973). В работе И.Ф. Симпсон (1968) солнечная активность рассматривается в качестве спускового механизма к разрядке напряжений в недрах Земли.

В работе В.М. Лятхера отмечено, что ход изменений среднего интервала между сильными землетрясениями согласуется с изменениями длины солнечного цикла. В частности отмечается, что в вариациях солнечной активности наблюдается ква­зи­периодическая компонента с периодом, примерно 60-100 лет. Обнаружен­ная корреляция между солнечной активностью и частотой сильных землетрясений поз­воляет утверждать, что и локальные характеристики сейсмичности, опре­де­ляе­мые на ограниченном во времени статистическом материале, могут изме­няться во времени примерно с той же периодичностью, что и сглаженные длины солнечных циклов.

John F. Simpson (1968) считает, что солнечные вспышки являются спусковым механизмом для сильных землетрясений в тех областях, где механические на­пря­же­ния дошли до критических величин. Между тем, он отмечает, что солнечные вспышки нельзя рассматривать в качестве фактора, вызывающего зем­ле­тря­се­ния.

Необходимо отметить, что существуют также работы, в которых не выяв­лено четкой связи сейсмичности Земли с солнечной активностью. Так, Ван-Жиль, проведя анализ более чем 20000 слабых землетрясений, произошедших с 1910 по 1945 годы, отметил отсутствие связи между солнечной активностью и слабой сейс­мичностью.

Китайский ученый Gui-Qing Zhang (1998) пришел к выводу, что землетрясения часто происходят в окрестностях минимальных лет солнечной активности. В годы пи­ковых значений солнечной активности, число землетрясений отно­сительно меньше, чем в окрестностях пиков.

В работе группы ученых (S.D. Odintsov, G.S. Ivanov-Kholodnyi and K. Georgieva, 2007) было показано, что максимум сейсмической энергии, выделенной земле­тря­сениями в течение 11-летнего цикла солнечной активности, наблюдается во время фазы снижения цикла и до наступления солнечного максимума цикла. Ими было установлено, что максимум в числе землетрясений непосредственно коррелирует с моментом внезапного увеличения скорости солнечного ветра.

Определенный интерес представляет, по нашему мнению, работа K. Schulenberg (2006,http://theraproject.com/sitebuildercontent/sitebuilderfiles/WPGMpresentation.pdf), в которой рассмотрен не стандартный подход к возможному влиянию Солнца на землетрясения. Им установлена достаточно убедительная статистическая связь между периодами предшествующими восходу Солнца и после заката Солнца и сильными землетрясениями на территории Китая. Физический механизм воз­дей­ст­вия Солнца перед восходом и после заката на ионосферу и литосферу, по мне­нию автора, отличаются. Солнце, как бы запускает триггерный механизм раз­ряд­ки напряжений в земной коре в виде землетрясений.

На рис.49 показано сравнение графиков солнечной активности (чисел Вольфа) и числа погибших при сильных землетрясениях с 1900 по май 2010 годы. Даже при поверхностном взгляде на графики можно заметить высокую корреляцию. При более детальном анализе можно отметить, что кроме 21 и 23 циклов солнечной активности, остальные циклы приходятся на повышенные значения числа погибших. Очень высокий максимум числа погибших в 1977 году приходится на начало 21 цикла, максимум которого наблюдался в 1980 году. Максимум числа погибших в 2004 году приходится на конец 23 цикла солнечной активности.


Рис. 49. Сравнение графика динамики числа погибших при сильных
землетрясениях (белый) с графиком солнечной активности (синий).
(Составил Э.Н. Халилов, 2010 г.)

Очевидно, что наличие корреляции между числом погибших при сильных землетрясениях и солнечной активностью предполагает наличие аналогичной связи между сильными землетрясениями и солнечной активностью.

На рис.50 приведено сравнение графиков числа сильных землетрясений с М>8 и солнечной активности за период с 1900 по май 2010 г. График сильных землетрясений составлен путем осреднения 5-ти летними скользящими средними.

Даже при первичном визуальном анализе можно заметить высокую корреляцию между двумя графиками. Из рассмотренных десяти 11-летних циклов солнечной активности, только два не совпадают с циклами повышенного числа сильных землетрясений – 16 и 17 циклы солнечной активности.


Рис. 50. Сравнение графика числа сильных землетрясений с M>8
(красный) с графиком солнечной активности (синий).
(Составил Э.Н. Халилов, 2010 г.)

В некоторых случаях можно говорить о незначительном смещении циклов солнечной и сейсмической активности. Например, цикл сейсмической активности смещен на 2 года ближе к концу 19-го цикла солнечной активности. Однако, в целом, картина высокой корреляции этих двух процессов впечатляет

Цунами


Рис. 51. Сравнение графика числа сильных цунами
(желтый) с графиком солнечной сктивности (синий).
(Составил Э.Н.Халилов, 2010 г.)

С сильными землетрясениями, как известно, тесно связаны цунами, которые являются, обычно, следствием сильных землетрясений в водной среде. На рис.51 показано сравнение графиков солнечной активности и сильных цунами. Как видно из сравнения, большинство сильных цунами произошло в периоды циклов повышенной солнечной активности – во время 16, 18, 19, 21, 22 и 23-го циклов солнечной активности.

ВЫВОДЫ

– С 1980 года по настоящее время скорость дрейфа северного магнитного полюса увеличилась более, чем на 500%. Это может отражать начало повышения геодинамической ак­тив­ности Земли, так как магнитное поле Земли формируется в результате слож­ных энергетических процессов в ее внутреннем и внешнем ядре;

– Обнаружено, что вариации угловой скорости вращения Земли имеют кор­ре­ля­цию с трендом солнечной постоянной;

– Установлена корреляционная связь между трендами солнечной и вул­ка­ни­че­ской активности;

– Установлена прямая корреляционная связь между солнечной активностью (11-лет­ними циклами) и числом сильных землетрясений, числом погибших при силь­ных землетрясениях и числом цунами.

Настоящие выводы являются промежуточными и предназначены для лучшего по­ни­мания результатов исследований, приведенных в последующих разделах.

ГЛАВА 6.
«ГЛОБАЛЬНЫЙ ЭНЕРГЕТИЧЕСКИЙ СКАЧОК»



Поделиться:


Последнее изменение этой страницы: 2016-06-22; просмотров: 791; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.66.224 (0.014 с.)