Классификация свободных радикалов, образующихся в нашем организме 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Классификация свободных радикалов, образующихся в нашем организме



Согласно предложенной нами классификации, все радикалы, образующиеся в нашем организме, можно разделить на природные и чужеродные. В свою очередь природные радикалы можно разделить на первичные (полезные), вторичные (повреждающие) и третичные (радикалы антиоксидантов) (см. схему на рис.2 и таблицы 1 и 2). Образование первичных радикалов осуществляется при участии определенных ферментных систем; эти радикалы выполняют полезные для организма функции. Из первичного радикала – супероксида, а также в результате других реакций в организме могут образоваться весьма активные молекулярные соединения: перекись водорода, гипохлорит и гидроперекиси липидов. Под действием ионов металлов переменной валентности, в первую очередь – ионов Fe2+, из этих веществ образуются вторичные свободные радикалы, такие как радикал гидроксила и радикалы липидов, которые оказывают разрушительное действие на клеточные структуры (таблица 2).

Таблица 1. Первичные радикалы, образующиеся в нашем организме

Название радикала Структура радикала Ферментная система, ответственная за образование радикала Биологическая роль радикала
Супероксид ·OO- НАДФН-оксидаза Антимикробная защита
Нитроксид ·NO NO-синтаза Фактор расслабления сосудов
Убихинол ·Q Дыхательная цепь митохондрий Переносчик электронов

 

Таблица 2. Вторичные радикалы

Название радикала Структура радикала Образуется в реакции
Радикал гидроксила ·OH Fe2+ + HOOH -> Fe3+ + HO- + ·OH Fe2+ + ClO- + H+ -> Fe3+ +Cl - + ·OH
Липидные радикалы LO· L· LOO· Fe2+ + LOOH -> Fe3+ + HO- + LO· LO· + LH -> LOH + L· L· + O2 -> LOO·


Перечисленные в таблицах 1 и 2 радикалы можно считать природными, поскольку они в определенном количестве всегда образуются в наших клетках. Наряду с этими радикалами разрушительное действие могут оказывать радикалы, появляющиеся при таких воздействиях, как ионизирующее излучение, ультрафиолетовое облучение или даже освещение интенсивным видимым светом, например, светом лазера. Такие радикалы можно назвать чужеродными. К ним принадлежат также радикалы, образующиеся из попавших в организм посторонних соединений, ксенобиотиков, многие из которых оказывают токсическое действие именно благодаря свободным радикалам, образующимся при метаболизме этих соединений.

40. Первичные радикалы (радикалы кислорода, окись азота, радикал коэнзима Q).

Первичные радикалы

Основные радикалы, образующиеся в клетках - это радикалы кислорода (супероксид и гидроксильный радикал), монооксид азота, радикалы ненасыщенных жирных кислот, радикалы, образующиеся в окислительно-восстановительных реакциях (например, убихинол). Радикалы образуются также при действии ультрафиолетовых лучей и в ходе метаболизма некоторых чужеродных соединений (ксенобиотиков), в том числе некоторых препаратов, одно время применявшихся в качестве лекарств.

Активные формы кислорода

Основная масса молекулярного кислорода, потребляемого клетками нашего организма, непосредственно восстанавливается до воды, окисляя органические субстраты в цепях переноса электронов. Меньшая часть кислорода расходуется на неполное окисление органических соединений. Наконец, заметная часть кислорода восстанавливается клетками нашего организма до супероксидного радикала. Так клетки – фагоциты (моноциты и гранулоциты крови и тканевые макрофаги) выделяют супероксид в реакции, катализируемой ферментным комплексом – НАДФН-оксидазой:

НАДФН + 2O2 -> НАДФ+ + 2O•- (супероксид)

Дальнейшая судьба супероксидных радикалов может быть разной (см. схему на рис.2). В норме и при отсутствие ионов металлов переменной валентности супероксидные радикалы превращаются в перекись водорода; эта реакция катализируется ферментом супероксиддисмутазой (СОД) (реакция 2 на рис.2):

2O•- -> H2O2 + O2

Клетки-фагоциты используют перекись водорода, превращая ее в гипохлорит – соединение, разрушающее стенки бактериальных клеток; эта реакция катализируется ферментом миелопероксидазой (реакция 3 нарис.2):

H2O2 + Cl- -> H2O + ClO-

Избыток перекиси водорода удаляется под действием двух ферментов: глутатионпероксидазы или каталазы (реакция 4 на рис.2):

В условиях патологии могут произойти нарушения либо системы защитных ферментов (в частности, снижение активности СОД), либо ферментных систем, связывающих ионы железа в плазме крови (церулоплазмин и трансферрин) и в клетках (ферритин). В этом случае супероксидные радикалы и перекись водорода вступают в альтернативные реакции: Образование двухвалентного железа из трехвалентного (реакция 7 на рис.2):

Fe3+ + O•- -> Fe2++ O2

Реакция перекиси водорода и гипохлорита с ионами двухвалентного железа (реакции 9 и 10 на рис.2):

Fe2+ + H2O2 -> Fe3+ + HO- + HO· (радикал гидроксила)
Fe2+ + ClO- + H+ -> Fe3+ + Cl- + HO· (радикал гидроксила)

Совокупность продуктов, образуемых активированными клетками-фагоцитами (радикалы супероксида и гидроксила, перекись водорода и гипохлорит) называют активными формами кислорода; некоторые авторы называют гипохлорит и продукты его метаболизма в тканях (такие как хлорамины R-NHCl) называют активными формами хлора. Радикалы гидроксила химически исключительно активны и вызывают повреждение белков, нуклеиновых кислот и липидов биологических мембран. Особенно тяжелые последствия имеют две последние реакции. Радикалы ·OH вызывают разрыв нитей ДНК, обладая, в зависимости от ситуации, мутагенным, канцерогенным или цитостатическим действием. С другой стороны, реагируя с ненасыщенными жирными кислотами, входящими в состав мембранных липидов, радикалы гидроксила инициируют цепную реакцию их пероксидации (перекисного окисления).

Окись азота

Второй свободный радикал, синтезируемый живыми клетками, – это монооксид азота NO·, часто называемый просто окисью азота. Структурную формулу окиси азота можно записать как ·N=O. NO· образуется клетками стенок кровеносных сосудов (эндотелия); эта реакция катализируется гем-содержащим ферментом NO-синтазой. В присутствии соединений, содержащих SH-группы, из ·NO образуется выделяемый эндотелием "фактор расслабления". Он играет ключевую роль в регуляции тонуса сосудов и кровяного давления: его недостаток приводит к гипертонии, избыток – к гипотонии. Именно с нарушением метаболизма фактора расслабления связывают такие заболевания как эссенциальная гипертензия и другие, связанные с нарушением нормального кровяного давления. ·NO выделяется также клетками-фагоцитами и вместе с супероксид-радикалами используется для борьбы с микробами (преимущественно грибковой природы). Полагают, что цитотоксическое действие NO· обусловлено его реакцией с супероксидом:

N=O + O-O- + H+ -> O=N-O-OH (пероксинитрит)

Пероксинитрит, образующийся в этой реакции, может разлагаться с образованием ·OH:

O=N-O-OH -> O=N-O· + HO· (радикал гидроксила)

Образование пероксинитрита и радикала гидроксила приводит к повреждению клеток при взаимодействии ·NO с супероксидом. Хорошо, если повреждающее действие системы (·NO + супероксид) направлено на болезнетворные микроорганизмы. Плохо, если оно направлено на свои собственные клетки и ткани. Поэтому в тех участках кровяного русла, где выделяется ·NO (как необходимый регулятор кровяного давления), не должно быть супероксидных радикалов. Для этого, в частности, в этих местах синтезируется фермент СОД, который удаляет супероксид.

Радикал коэнзима Q

Биологическое окисление субстратов клеточного дыхания, таких как глюкоза, пировиноградная и янтарная кислота и другие, осуществляется, как известно, в два этапа. На первом этапе в цикле трикарбоновых кислот происходит последовательный отрыв атомов водорода от субстрата и образование восстановленных форм пиридиннуклеотидов НАДН и НАДФН. На втором этапе электроны от НАДН и НАДФН переносятся по так называемой дыхательной цепи на кислород. В состав дыхательной цепи входят флавопротеиды, комплексы негемового железа, убихинон и гемопротеиды (цитохромы a,b и c и цитохром-оксидаза). Схема дыхательной цепи дана на рис.4. Важным звеном цепи переноса электронов служит убихинол (коэнзим Q)(см. рис.5), радикал которого (семихинон, ·QH) образуется либо при одноэлектронном окислении убихинола (QH2, гидрохинон-форма) (см. рис.6), либо при одноэлектронном восстановлении убихинона (Q) (см. рис.7). В норме радикал этот – не более как рядовой участник процесса переноса электронов; но при нарушении работы дыхательной цепи он может стать источником других, менее безобидных радикалов, в первую очередь, радикалов кислорода.

41. Клеточные системы антирадикальной защиты.

В нормальных условиях процесс перекисного окисления липидов находится под строгим контролем ферментативных и неферментативных систем клетки, от чего скорость его невелика. Принято делить химические соединения и физические воздействия, влияющие на скорость перекисного окисления липидов, на прооксиданты (усиливают процессы перекисного окисления) и антиоксиданты (тормозят перекисное окисление липидов). К прооксидантам в живой клетке относятся высокие концентрации кислорода (например, при длительной гипербарической оксигенации больного), ферментные системы, генерирующие супероксидные радикалы (например, ксантиноксидаза, ферменты плазматической мембраны фагоцитов и др.), ионы двухвалентного железа. Хотя сам процесс перекисного окисления развивается в виде цепных реакций в липидной фазе мембран и липопротеинов, начальные (а возможно, и промежуточные) стадии этой сложной системы реакций протекают в водной фазе. Часть защитных систем клетки также локализуется в липидной фазе, а часть - в водной фазе. В зависимости от этого можно говорить о водорастворимых и гидрофобных антиоксидантах.

Таблица 3. Наиболее известные антиоксиданты
Церулоплазмин (плазма крови) Окисляет Fe2+ до Fe3+ молекулярным кислородом
Апо-белок трансферрина (плазма крови) Связывает Fe3+
Ферритин (цитоплазма) Окисляет Fe2+ и депонирует Fe3+
Карнозин Связывает Fe2+
Супероксиддисмутазы (повсеместно) Удаляет супероксид с образованием пероксида водорода
Каталаза (внутри клеток) Разлагает пероксид водорода с выделением кислорода
Глутатион-пероксидазы (в цитоплазме) Удаляет пероксид водорода за счет окисления глутатиона
Удаляет гидроперекиси липидов
Глутатионредуктаза Восстанавливает окисленный глутатион
Токоферол, тироксин, стероиды Перехватывают радикалы липидов
Аскорбиновая кислота Регенерирует окисляющиеся токоферол и убихинон
Глутатион Используется для восстановления пероксидов

42. Динамика мембран. Фазовые переходы в липидном бислое.

Структурная основа биологических мембран - билипидный слой. В продольной плоскости биологическая мембрана представляет собой сложную мозаику из разнообразных липидов и белков, причем их распределение по поверхности биологической мембраны неоднородно. В некоторых биологических мембранах имеются обширные участки билипидного слоя, практически свободные от белков (напр., в эритроцитах белки занимают только 35% площади поверхности всей мембраны биологической, в микросомах-23%). При высоком содержании белка в биологических мембранах липиды не образуют сплошной бислой, а располагаются в виде отдельных вкраплений между белковыми молекулами. Сам билипидный слой в мембране может иметь доменную структуру в результате, напр., сосуществования несмешиваемых липидных фаз, находящихся в двух различных физ. состояниях - гелевом и жидкокристаллическом. Часть липидов в биологических мембранах может находиться также в составе так называемых небислойных фаз (мицеллярная фаза, гексагон. фаза и др.).

Липиды - основной строительный материал, из которого формируются клеточные мембраны. Сложность, многообразие и изменчивость липидного состава мембран позволяет предположить, что они участвуют также в регуляции важнейших мембранных процессов. Основные липидные компоненты биологических мембран - фосфолипиды, гликолипиды и стерины. Каждая группа этих липидов представлена большим числом разнообразных соединений. Так, в мембране эритроцитов человека содержится не менее 20 различных представителей основного фосфолипида этой мембраны - фосфатидилхолина; в целом же в мембране эритроцитов идентифицировано ок. 200 различных липидов.

Мембранные белки. Молекулярная масса мембранных белков обычно варьирует в пределах от 10 тыс. до 240 тыс. Они значительно различаются между собой по прочности связывания с мембраной. Белки, наз. периферическими или поверхностными, сравнительно слабо связаны с мембраной и отделяются от нее в мягких условиях, напр. в растворах, имеющих высокую ионную силу или содержащих комплексоны. Намного прочнее связаны с мембраной так называемые интегральные, или внутримембранные, белки. Чтобы их выделить, требуется, как правило, предварительно разрушить мембрану с помощью ПАВ или орг. растворителей.

Мембранные белки наряду с липидами играют важную структурную роль, кроме этого они ответственны за выполнение подавляющего большинства специализированных функций отдельных мембран. Они служат катализаторами протекающих в мембранах и на их поверхности реакций (дыхание), участвуют в рецепции гормональных и антигенных сигналов и т.п. (аденилатциклаза), выполняют транспортные функции, обеспечивают пиноцитоз (захват клеточной поверхностью и поглощение клеткой жидкости), хемотаксис (перемещение клетки, обусловленное градиентом концентраций вещества в среде) и т.п. Многие из периферических белков-компоненты цитоскелета (совокупность филаментов и микротрубочек цитоплазмы) и связанных с ним сократитительных элементов, которые обусловливают форму клетки и ее движение.

Динамические свойства биологических мембран обусловлены текучестью билипидного слоя, гидрофобная область которого в жидкокристаллическом состоянии имеет микровязкость, сравнимую с вязкостью легкой фракции машинного масла. Поэтому молекулы липидов, находящиеся в бислое, обладают довольно высокой подвижностью и могут совершать разнообразные движения - поступательные, вращательные и колебательные.

В случае липидов большой вклад в подвижность дают внутримолекулярные движения углеводородных цепей. Они происходят путем гош-транс-поворотов смежных звеньев углеводородной цепи вокруг связи С--С. Благодаря высокой конформационной подвижности цепей в них постоянно возникают изгибы и изломы, что приводит к нарушению регулярного расположения липидных молекул в бислое и к появлению в нем дефектов упаковки, называемых "кинки" и "джогги".

Внутримолекулярная подвижность различных участков липидной молекулы, находящейся в бислое, неодинакова. Наименьшей подвижностью обладает глицериновый остов молекулы, который служит как бы жестким "якорем", ограничивающим движения близлежащих участков углеводородных цепей. По направлению к середине бислоя подвижность цепей возрастает и становится максимальной в области концевых метильных групп. Довольно высокой недвижностью обладает также полярная головка липидной молекулы.

Помимо движений отдельных участков липидной молекулы относительно друг друга в жидкокристаллическом бислое происходят также движения всей молекулы как единого целого. Они включают: аксиальное вращение молекулы вокруг ее длинной оси, перпендикулярной к плоскости бислоя, маятниковые и поплавочные колебания молекулы относительно ее равновесного положения в бислое, перемещение молекулы вдоль бислоя (латеральная диффузия) и перескок ее с одной стороны бислоя на другой. Все эти движения совершаются с разными скоростями.

Аксиальное вращение липидных молекул происходит очень быстро с частотой порядка 107-108с-1, тогда как латеральная диффузия осуществляется гораздо медленнее. Тем не менее при среднем коэффициенте латеральной диффузии липидов ок. 10-8см, измеренном для многих биологических мембран, липидной молекуле потребуется всего 1 с, чтобы промигрировать от одного конца клетки до другого. Очень медленно протекает в липидном бислое флип-флоп. Обычно полупериод флип-флопа составляет величины порядка нескольких часов или даже дней. Однако в некоторых мембранах скорость флип-флопа может быть значительно выше (полупериод 1-2 мин), что объясняется участием определенных интегральных белков в переносе липидных молекул через мембрану.

Иммобилизация липидов может происходить в результате латерального фазового разделения, приводящего к образованию гелевой фазы, или при их взаимодействии с белками. Предполагается, что интегральные белки окружены пограничным слоем липидных молекул, подвижность которых ограничена или, по крайней мере, нарушена в результате контакта с неровной поверхностью белковой глобулы.

Внутримолекулярная динамика мембранных белков изучена меньше, чем липидов. Известно лишь, что боковые заместители на тех участках полипептидной цепи, которые погружены в билипидный слой, в значительной мере иммобилизованы. Многие мембранные белки способны легко диффундировать вдоль мембраны и обладают довольно высокой вращательной подвижностью. Но даже в случае самых подвижных белков измеряемые коэффициентом диффузии примерно на порядок ниже, чем для липидных молекул. Времена вращательной релаксации для интегральных белков лежат в диапазоне от 20 до 500 мкс, а коэф. латеральной диффузии (вдоль бислоя) варьирует от 7.10-9 до 10-12см2.с-1.

Для объяснения наиболее общих механизмов функционирования и регуляции живой клетки предлагается новый принцип - принцип жизненной динамики или динамики всех физико-химических процессов в ней. Принцип может быть сформулирован следующим образом: "Существование живой клетки невозможно без непрерывного, саморегулирующегося процесса распада и образования связей самой различной природы (ионных, ковалентных, водородных, а также ион-дипольных, ориентационных, индукционных, дисперсионных и гидрофобных взаимодействий) в системе биологических мембран, включающей и мембраны клеточных органелл".

Учитывая центральную роль биологических мембран в регуляции клеточного метаболизма, жизненная динамика должна включать всю совокупность процессов возникновения и распада внутри- и межмолекулярных взаимодействий и вызываемых ими движений молекул, сложных молекулярных комплексов и надмолекулярных образований в живой клетке. Сюда входят реакции свободнорадикального окисления липидов биологических мембран, которые вместе с процессами гидролиза богатых энергией соединений могут вызывать структурные и конформационные изменения в мембранах и приводить к латеральным (в плоскости мембраны) и трансферальным (перпендикулярно к ней) автоколебательным движениям структурных компонентов биомембран.

Такие автоколебательные движения обеспечивают трансмембранный транспорт биологически важных веществ и продуктов их взаимодействия с соединениями и ионами из окружающей клетку среды и с метаболитами, образующимися на обеих поверхностях биомембран, а также синхронизируют во времени и пространстве функционирование мембраносвязаных и свободных ферментов, находящихся в околомембранном пространстве.

Следует подчеркнуть особое значение автоколебаний биологических мембран для транспорта молекул, их ассоциатов и ионов. Колеблющиеся участки мембран могут выполнять при этом роль своеобразного насоса, в основании действия которого лежит в среднем направленное вибрационное перемещение частиц под действием в среднем ненаправленных периодических сил.

В целом, описанное выше сочетание процессов может обеспечивать их пространственно-временную упорядоченность, т. е., организацию живой клетки как целостной, открытой (непрерывно обменивающейся веществом, энергией и информацией с внешней средой), неоднородной, динамической системы, которая саморегулируется и самовоспроизводится. В такой системе компартментализация играет роль важнейшего фактора регуляции, с помощью которого осуществляется координация функций всех других регуляторных систем, включая генетические, и обеспечивается динамический порядок: все необходимое доставляется в соответствующее место, в определенное время и в необходимом количестве.

Значение организации для биологических систем А. Сент-Дьерди определил следующим образом: "Один из основных принципов биологии организация; это означает, что две системы, составленные вместе определенным образом, образуют новую единицу - систему, свойства которой не аддитивны и не могут быть описаны посредством свойств составляющих ее частей". Именно образование и поддержание организации живой клетки, как целостной, открытой, неоднородной, динамической системы, способной к саморегуляции и самовоспроизводству, представляет собой фундаментальное отличие жизненной динамики от любой другой совокупности физико-химических процессов. В ходе эволюции от одноклеточных к многоклеточным организмам со специализацией клеточных функций динамика отдельных клеток определила (и в этом объяснение термина "жизненная") динамику поведения образований более высоких уровней - тканей, органов и целостных организмов, как открытых целостных систем иерархического строения. При этом важнейшим связующим звеном в динамике всех систем организма являются процессы, которые протекают на плазматической мембране, отделяющей клетку от внешней среды. По словам Т. Уотермена: "Свойства плазматической мембраны лежат в основе специфического потока веществ и энергии в организм и из него, а, следовательно, и в основе характеристик организма, как открытой системы". При таком подходе генному аппарату клетки неизбежно остается роль фактора стабильности при ее самовоспроизводстве и функционировании или, говоря другими словами, роль нот, по которым исполняется "музыка жизни", характерная для данного организма. Следует особо подчеркнуть, что столь радикальный пересмотр взаимоотношений в системе "ядро-цитоплазма" в пользу главенства цитоплазмы не противоречит законам современной генетики, поскольку касается лишь механизмов экспрессии генов в клетках высших организмов и во многом углубляет представления целостной картины живого. Принцип жизненной динамики можно рассматривать как современный, конкретизированный для живых клеток, с учетом особенностей их состава и пространственного строения, вариант основного принципа термодинамического объяснения функционирования живых систем - принципа устойчивого неравновесия, сформулированного Э.С. Бауэром. В разработке этого варианта использован концептуальный аппарат термодинамики сильно неравновесных сложных открытых динамических систем, а также синергетики - науки о самоорганизации таких систем. Непрерывные физико-химические изменения молекул в процессах жизненной динамики приводят к изменению их дипольных моментов и, как следствие, к неравновесной поляризации структурных компонентов мембранной системы клеток (диэлектриков по своей физической природе). Это может обусловливать так называемый "биоэлектретный эффект", который проявляется в виде электростатических микрополей живых клеток. Генерируемые таким образом поля достаточны по своей величине для того, чтобы влиять в свою очередь на протекание процессов жизненной динамики. В результате возникает единый комплекс взаимосвязанных изменений химического и электрического состояния вещества, образующего живую клетку, так что воздействие на одну из составляющих комплекса неизбежно приводит к перестройке других составляющих, а следовательно, и комплекса в целом.

Фазовое состояние мембранныхлипидов. Мембранные липиды могут находиться в нескольких фазовых состояниях, т. е. они обладают мезомор-физмом. Два основных ламеллярных состояния, характерных для мембранных липидов в клеточных системах: кристаллическое и жидкокристаллическое – различаются плотностью упаковки и подвижностью находящихся в бислое белковых молекул. При более плотной упаковкеацильные цепи липидов расположены под углом, близким к 90°, и все С—С-связи находятся в транс-конформации (максимально вытянуты). Фазовый переход приводит к увеличению подвижности ацильных цепей в бислое, увеличению угла их наклона и уменьшению плотности упаковки. Латеральная подвижность мембранных белков после фазового перехода возрастает, увеличивается вероятность образования их ассоциатов.

В липидном бислое могут также образовываться гексагональные структуры (вывернутые мицеллы). При их образовании в мембране возникают дефекты регулярной упаковки, что позволяет проникать через мембранукрупным молекулам, а также обеспечивает обмен компонентами монослоев в бислойной мембране.

Фазовые переходы мембранных липидов могут быть вызваны изменением температуры среды. Значение температуры, при котором наблюдается фазовый переход, называется критической температуройфазового перехода, или разделения фаз, если различные участки мембраны вследствие гетерогенности липидного состава по-разному отвечают на изменения температуры. Ионы Са2+, изменение числа ненасыщенных жирнокислотных цепей мембранных фосфолипидов и некоторые другие факторы также могут индуцировать фазовые переходы в бислое. Обычно критическая температура фазовых переходов приближена ктемпературе тела гомойотермных животных (или к температуре среды обитания пойкилотермных животных). Таким образом, достаточно незначительного изменения условий, чтобы изменить упаковку мембраны.

43. Слабые взаимодействия (ион-ионное взаимодействие, диполь-дипольное взаимодействие, наведенные диполи, лондоновские или дисперсные силы).

Слабое взаимодействие, или слабое ядерное взаимодействие — одно из четырёх фундаментальных взаимодействий в природе. Оно ответственно, в частности, за бета-распад ядра. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики (сильное и электромагнитное), характеризуются значительно большей интенсивностью. Однако оно значительно сильнее четвёртого из фундаментальных взаимодействий,гравитационного. Слабое взаимодействие является короткодействующим — оно проявляется на расстояниях, значительно меньших размера атомного ядра (характерный радиус взаимодействия 10−18 м[1]). Стандартная модель физики элементарных частиц описывает электромагнитное взаимодействие и слабое взаимодействие как разные проявления единого электрослабого взаимодействия, теорию которого разработали около 1968 года Глэшоу, Салам и Вайнберг. За эту работу они получили Нобелевскую премию по физике за 1979 год.

Свойства

В слабом взаимодействии участвуют все фундаментальные фермионы (лептоны и кварки). Это единственное взаимодействие, в котором участвуют нейтрино (не считая гравитации, пренебрежимо малой в лабораторных условиях), чем объясняется колоссальная проникающая способность этих частиц. Слабое взаимодействие позволяет лептонам, кваркам и их античастицам обмениваться энергией, массой, электрическим зарядом и квантовыми числами — то есть превращаться друг в друга.

Первая теория Ферми описывала слабое взаимодействие как контактное взаимодействие между четырьмя фермионами, но была неперенормируемой. Сегодня известно, что переносчиками слабого взаимодействия являются виртуальные W- и Z-бозоны. Поскольку их масса составляет около 90 ГэВ/c², радиус действия слабых сил, согласно принципу неопределенности, ограничен величиной 10−18 м, что примерно в 1000 раз меньше диаметра атомного ядра.

Долгое время считалось, что законы природы симметричны относительно зеркального отражения, то есть результат любого эксперимента должен быть таким же, как результат эксперимента, проведенного на зеркально-симметричной установке. Эта симметрия относительно пространственной инверсии связана с законом сохранения чётности. Однако в середине 1950-х Янг Чжэньнин и Ли Цзундао предположили, что слабое взаимодействие может не подчиняться этому закону. В 1957 году Ву Цзяньсун и сотрудники подтвердили это предсказание, что принесло Янгу и Ли Нобелевскую премию по физике за 1957 год. В 1957 году Маршак и Сударшан и, несколько позже, Фейнман и Гелл-Манн предложилилагранжиан для слабого взаимодействия.

В современной форме слабое взаимодействие описывается теорией Вайнберга—Салама — квантовой теорией поля с калибровочной группой SU(2)×U(1) и спонтанно нарушенной симметрией вакуумного состояния, вызванной действием поля бозона Хиггса. Доказательство перенормируемости такой модели Мартинусом Вельтманом и Герардом 'т Хоофтом было отмечено Нобелевской премией по физике за 1999 год.

Слабый распад

Процесс распада более массивной частицы на более легкие вследствие слабого взаимодействия называется слабым распадом. Типичным примером является бета-распад нейтрона.

Ион-дипольное Сольватация Ион-дипольное, то есть, когда ион взаимодействуетс нейтральной молекулой, имеющей постоянный дипольный момент.

Ион-ионное Ионная ассоциация Ион-ионное (монополь-монополь)

(Диполь-дипольное) (Агрегация растворителя) Диполь-дипольное, то есть взаимодействие между молекулами, имеющими постоянный дипольный момент.

Наведенные Диполи возникают только при внесении диэлектрика в электрическое поле. Под влиянием последнего в неполяр-ных молекулах диэлектрика происходит смещение зарядов1 их.
Наведенные диполи возникают только при внесении диэлектрика в электрическое поле.
Схема взаимодействия между.| Взаимное отталкивание электронов на / заполненных орбиталях. Такое отталкивание особенно велико, когда заполненные орбитали. При этом возникают мгновенные наведенные диполи, между которыми действуют силы взаимного притяжения.
Схема возникновения наведенных дипольных моментов, приводящих к слабому (вандерваальсовому взаимодействию.| Перекрывание ls-op - биталей двух атомов водорода в молекулярном ионе Н 2. При согласованном движении электронов у молекулы могут возникать наведенные диполи, и между этими диполями возникают так называемые индукционные силы притяжения.



Поделиться:


Последнее изменение этой страницы: 2016-04-26; просмотров: 2280; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.186.6 (0.045 с.)