Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
П.2.3. Вычисление тройного интеграла в сферических координатах.Содержание книги
Поиск на нашем сайте
Точка в трехмерном пространстве описывается тремя координатами (x, y, z) которые являются проекциями точки на оси Oх, Oу и Oz. Используем другой подход. Введем r - расстояние от начала координат до точки, j - угол поворота в плоскости Oxy, y - угол, который отсчитывают от плоскости Oxy. Сферические координаты (r,j,y) связаны с декартовыми координатами соотношениями , где 0£j<2p, -p/2£y£p/2, 0£r<+¥. Якобиан перехода к сферическим координатам равен (проверить самостоятельно). Тогда справедлива формула замены в тройном интеграле:
(20) Сферические координаты удобно применять в случае, когда область интегрирования есть шар или его часть, так как уравнение его границы - сферы x 2+ y 2+ z 2= R 2, где R - радиус сферы, в сферических координатах имеет вид r = R. Удобно также переходить и в случае, если подынтегральная функция содержит выражения вида x 2+ y 2+ z 2= r ².Если область G ограничена эллипсоидом x 2/ a 2+ y 2/ b 2+ z 2/ с 2=1, то используют обобщенные сферические координаты , где якобиан . В этих координатах уравнение эллипсоида имеет простой вид r =1.
Пример 1: Вычислить , где G – шар . Решение: Границей области G является сфера x 2+ y 2+ z 2=1, уравнение которой в сферических координатах имеет вид r =1. Так как r – расстояние до начала координат, то для любой точки шара выполняется неравенство . Угол φ вводится в плоскости Oxy так же, как и в полярных координатах. Проекция шара на плоскость Oxy - круг, а для круга . Угол отклонения ψ от плоскости Oxy принимает наибольшее значение для точек, лежащих на оси Оz при z >0 и наименьшее значение на оси Oz при z <0. Поэтому для шара всегда . Таким образом, при переходе к сферическим координатам шар G преобразуется в область Ω, которая является прямоугольным параллелепипедом: , , .
Пример 2: Вычислить , где G – часть шара , лежащая в первом октанте (x >0, y >0, z >0). Рис.40 Решение: Область G приведена на рис. 40. Как уже говорилось, для всех точек шара справедливо . Проекцией области G на плоскость Оху является часть круга, лежащего в первой четверти, поэтому . Угол ψ принимает в данной области наименьшее значение ψ =0 для точек координатной плоскости z =0, а наибольшее значение для точек на оси Оz при z>0. Расставляем пределы интегрирования:
Пример 3: Вычислить тройной интеграл , если область G ограничена сферой . Рис.41 Решение: Преобразуем уравнение сферы к каноническому виду, выделив полный квадрат по z: . Сфера с центром в точке (0,0,1/2) радиуса 1/2, касается начала координат и расположена выше координатной плоскости z =0 (рис. 41). Ее уравнение в сферических координатах имеет вид r =sin ψ, так что для всех внутренних точек выполняется неравенство . Так как проекцией области G на плоскость Оху является круг, то .Угол отклонения ψ для данной области изменяется в пределах . Расставляем пределы интегрирования:
Пример 4: Перейти к сферическим координатам и вычислить , где G - объем, ограниченный поверхностями x 2+ y 2= z 2, x 2+ y 2+ z 2= a 2, z =0, x =0, y =0
Решение: Область G - это часть шара, лежащего в первом октанте и вырезанного конусом (рис.42).Как уже говорилось, для шара в первом октанте , , а угол ψ наименьшее значение принимает на поверхности конуса. Найдем его из уравнения конуса, преобразовав к сферическим координатам: r ²(cos² φ +sin² φ)cos² ψ = r ²sin² ψ или tg ψ =1,откуда получаем . Перейдем к сферическим координатам:
Рис.42 Рис.43
Пример 5: В интеграле перейти к сферическим координатам и расставить пределы интегрирования, если G – общая часть двух шаров и .
Решение: Область G приведена на рис.43. Из рисунка видно, что нижней границей области является сфера со смещенным центром, ее уравнение r =2 R sin ψ, а верхней – сфера с центром в начале координат, уравнение которой r = R. Поэтому область G необходимо разбить на две области конической поверхностью, проходящей через линию пересечения двух сфер. Найдем ее уравнение: 2 R sin ψ = R или sinψ=1/2, откуда получаем . В первой области при координата r изменяется от 0 до 2 R sin ψ, а во второй области при r изменяется от 0 до R. В обоих случаях , так как проекциями этих областей на плоскость Оху является круг. В итоге получаем Замечание: При решении некоторых задач, например, связанных с радиолокацией, удобнее отсчитывать угол y не от плоскости Oху, а от оси Oz. Приведем данные координаты: , где 0£j<2p, 0£y£p, 0£r<+¥, .
|
|||||||||||||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 3258; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.219.213 (0.006 с.) |