Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Переход к полярным координатам в двойном интеграле.Содержание книги Поиск на нашем сайте
Важнейшимчастным случаем криволинейных координат являются полярные координаты (r, φ). Они связаны с прямоугольными координатами формулами: , . Якобиан преобразования в этом случае , а формула перехода к полярным координатам в двойном интеграле имеет вид: (4) Переходить к полярным координатам удобно в тех случаях, когда область интегрирования есть круг, кольцо или их часть, а так же в случае, когда подынтегральная функция имеет вид . В полярных координатах выражение . Границей круга является окружность и ее уравнение в полярных координатах принимает вид: r = R. Тогда область D - круг в полярной системе координат на плоскости Оrφ переходит в прямоугольную область Ω, которая задается неравенствами: (рис.17а,б). Интегрирование в полярных координатах проводится по координатным линиям r =const и φ =const. Линии r =const представляют из себя окружности с центром в начале координат. По окружностям происходит изменение координаты φ. Линии φ =const – это семейства лучей, выходящих из начала координат, по которым происходит изменение координаты r. Координатная сетка в полярных координатах изображена на рис.18.
Рис.17а Рис.17б Рис.18
Пусть область D расположена между лучами φ = α и φ = β, где α< β, и ограничена линиями и , где и любой луч, выходящий из полюса φ =const () пересекает ее границу не более чем в двух точках (простая область относительно r) (рис.19).Тогда двойной интеграл сводится к повторному по формуле:
Рис.19 Рис.20 (5) Пусть область D расположена между окружностями r = а и r = b, где а< b и ограничена линиями и , где и любая окружность радиуса r =const () пересекает границу области не более чем в двух точках (правильная относительно φ) (рис.20). В этом случае двойной интеграл сводится к повторному по формуле: 6)
Пример 1. Вычислить двойной интеграл , где область D ограничена окружностью . Решение: Как уже говорилось выше, если интегрирование ведется по кругу, то уравнение его границы в полярных координатах имеет вид r =1, а на плоскости Оrφ область Ω является прямоугольником . Осталось записать в полярных координатах подынтегральную функцию: . Вычисляем интеграл Пример 2. Вычислить , если область D ограничена окружностью , лежащей в первой четверти, и прямыми y = x и . Решение: Область D изображена на рис.21. Переведем ее границы в полярные координаты: уравнение окружности имеет вид r = a, а отрезки прямых y = x являются лучами и . Проводя лучи φ =const , определяем, что координата r изменяется от 0 до а. Тогда по формуле (5) получаем: Рис.21 Пример 3. В двойном интеграле перейти к полярным координатам и расставить пределы интеграции в том и другом порядке, если область D ограничена кривой . Решение: Чтобы построить область D, приведем уравнение кривой к каноническому виду, для чего выделяем полный квадрат по переменной х: , . Получаем уравнение окружности с центром на оси Ох в точке х = а, у =0, радиуса а, при этом окружность касается оси Оу (рис.22а,б).
Рис.22а Рис.22б
Переведем границу области D в полярные координаты, для этого удобнее воспользоваться уравнением окружности в виде : или . Область D находится между лучами и и проводя лучи при , определяем, что координата r изменяется от 0 в начале координат до значения радиуса на окружности, т.е. до значения (рис.22а). Тогда по формуле (5) расставляем пределы интегрирования: Чтобы расставить пределы интегрирования в другом порядке, определим границы изменения координаты r. Для этого проведем координатные линии r =const, пересекающие область D, и определим окружности, которые касаются нашей области. Очевидно, что это будут линии r =0 и r =2 а, так что r изменяется в пределах от 0 до а (рис.22б). Для нахождения границ изменения переменной φ уравнение окружности разрешим относительно φ: или . Для нижней ветви окружности берется знак «-», а для верхней ветви – знак «+». Теперь по координатным линиям r =const, которые пересекают область D, определяем границы изменения φ: от значения на нижней ветви окружности до значения на верхней ветви окружности. В результате по формуле (6) получаем:
Пример 4. В двойном интеграле перейти к полярным координатам и расставить пределы интеграции в том и другом порядке, если область D ограничена линиями Решение: Кривая является уравнением окружности с центром в точке (0,1): . При выбирается верхняя половина круга – это и будет область D. Переведем границы области в полярные координаты, при этом уравнение окружности имеет вид . Если из него выразить φ, получаем для правой ветки окружности и - для левой. Прямая y=1 в полярных координатах имеет уравнение или и для отрезков прямых, лежащих в первой и во второй четверти соответственно. Нанесем координатные линии φ =const, откуда определяем, что область D расположена между лучами и , а радиус изменяется от значения на отрезке прямой y=1 до значения на дуге окружности (рис.23а). Тогда получаем: .
Рис.23а Рис.23б
Проведем линии r =const и определяем, что область заключена между координатными линиями r =1 и r =2, а координатная линия проходит через точки (±1,1), в которых пересекаются границы области - окружность и прямая (рис.23б). Поэтому D необходимо разбить на две простые области относительно φ: и и пределы интегрирования в двойном интеграле расставляются так:
Замечание: В некоторых случаях, если область интегрирования в двойном интеграле ограничена окружностью , удобнее делать замену . При такой замене осуществляется параллельный перенос системы координат в центр окружности, а якобиан преобразования при этом не изменяется, т.е. J = r (предлагается убедиться в этом самостоятельно). В частности, если в примере 4 ввести замену , то уравнение окружности преобразуется к виду r =1, а область интегрирования Ω в координатах Оrφ становится прямоугольной: . Пример 5. Вычислить интеграл , где область D – лежащая в первой четверти часть эллиптического кольца . Замечание: В случае, когда область интегрирования в двойном интеграле является эллипс или его часть, то вводят обобщенные полярные или эллиптические координаты . При этом J = abr (проверить самостоятельно), а выражение преобразуется в выражение . Решение: Перейдем к эллиптическим координатам, при этом границы эллиптического кольца принимают вид r =1 и r =2, а вся область расположена между лучами φ =0 и . Поэтому интеграл вычисляем следующим образом:
|
||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 14491; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.136.236.178 (0.007 с.) |