Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Определение соответствия распределения случайных возмущений нормальному закону распределения.Содержание книги
Поиск на нашем сайте
Непрерывная случайная величина Х называется распределенной по нормальному закону с параметрами μ и σ, если ее плотность распределения есть где параметр μ — среднее значение (математическое ожидание) случайной величины и указывает координату максимума кривой плотности распределения, а σ² — дисперсия. Нормальное распределение зависит от двух параметров — смещения и масштаба, то есть является с математической точки зрения не одним распределением, а целым их семейством. Значения параметров соответствуют значениям среднего (математического ожидания) и разброса (стандартного отклонения).
Закон распределения для случайного возмущения принимает вид:
Если случайное возмущение подчиняется нормальному закону распределения, то оценки параметров модели несмещенные и эффективные. Основные числовые характеристики вектора остатков в классической множественной регрессионной модели. Классическая линейная модель множественной регрессии (КЛММР) представляет собой простейшую версию конкретизации требований к общему виду функции регрессии f(X), природе объясняющих переменных X и статистических регрессионных остатков e(Х) в общих уравнениях регрессионной связи. В рамках КЛММР эти требования формулируются следующим образом: Из (2.5) следует, что в рамках КЛММР рассматриваются только линейные функции регрессии, т.е. В повторяющихся выборочных наблюдениях (xi(1), xi(2),..., хi(p); yi) единственным источником случайных возмущений значений yi являются случайные возмущения регрессионных остатков ei. Кроме того, постулируется взаимная некоррелированность случайных регрессионных остатков (E(eiej) = 0 для i ¹ j). Это требование к регрессионным остаткам e1,...,en относится к основным предположениям классической модели и оказывается вполне естественным в широком классе реальных ситуаций. Тот факт, что для всех остатков e1,e2,...,en выполняется соотношение Eei2; =s2, где величина s2 от номера наблюдения i не зависит, означает неизменность дисперсий регрессионных остатков. Последнее свойство принято называть гомоскедастичностью регрессионных остатков. Сумма квадратов остатков (RSS) измеряет необъясненную часть вариации зависимых переменных. Она используется как основная минимизируемая величина в методе наименьших квадратов и для расчета других показателей. Стандартная ошибка регрессии (SEE) измеряет величину квадрата (ошибки), приходящейся на одну степень свободы модели. Она используется в качестве основной величины для измерения качества оценивания модели (чем она меньше, тем лучше). Отражение в модели влияния неучтённых факторов. Для учета случайного характера экономических процессов, модель записывают в виде: Y = f(X) + ε (1) где: Y – эндогенная переменная X – вектор предопределенных переменных f(X) – детерминированная математическая функция, определяющая закономерность между эндогенной и предопределенными переменными ε – случайная величина, учитывающая влияние неучтенных факторов и индивидуальные особенности конкретного объекта (случайное возмущение). Модель (1) называют эконометрической моделью. Правая часть (1) называется обобщенной функциональной или регрессионной зависимостью. При составлении модели случайные возмущения присутствуют только в поведенческих уравнениях эконометрической модели. В уравнениях тождествах они отсутствуют. Рассеянные вокруг нуля случайные возмущения отражают влияние на текущие эндогенные переменные этой модели неучтённых факторов. В общем виде эконометрической модели случайные возмущения отражаются как:
– вектор-столбец случайных возмущений модели. Случайные возмущения сохраняются в приведенной форме модели. Их вычисление производится по формуле: ε= A-1 , где А - матрица коэффициентов перед эндогенными переменными. Замечание. Необходимость учета в моделях влияния случайных возмущений является четвертым принципом спецификации эконометрических моделей
|
|||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 449; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.11.13 (0.011 с.) |