Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Энергетический и пластический обмен, их взаимосвязьСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Обмен веществ (метаболизм) – это совокупность взаимосвязанных процессов синтеза и расщепления химических веществ, происходящих в организме. Биологи разделяют его на пластический (анаболизм) и энергетический обмены (катаболизм), которые связаны между собой. Все синтетические процессы нуждаются в веществах и энергии, поставляемых процессами расщепления. Процессы расщепления катализируются ферментами, синтезирующимися в ходе пластического обмена, с использованием продуктов и энергии энергетического обмена. Для отдельных процессов, происходящих в организмах, используются следующие термины: Анаболизм (ассимиляция) – синтез более сложных мономеров из более простых с поглощением и накоплением энергии в виде химических связей в синтезированных веществах. Катаболизм (диссимиляция) – распад более сложных мономеров на более простые с освобождением энергии и ее запасанием в виде макроэргических связей АТФ. Живые существа для своей жизнедеятельности используют световую и химическую энергию. Зеленые растения – автотрофы, – синтезируют органические соединения в процессе фотосинтеза, используя энергию солнечного света. Источником углерода для них является углекислый газ. Многие автотрофные прокариоты добывают энергию в процессе хемосинтеза – окисления неорганических соединений. Для них источником энергии могут быть соединения серы, азота, углерода. Гетеротрофы используют органические источники углерода, т.е. питаются готовыми органическими веществами. Среди растений могут встречаться те, которые питаются смешанным способом (миксотрофно) – росянка, венерина мухоловка или даже гетеротроф– но – раффлезия. Из представителей одноклеточных животных миксотрофами считаются эвглены зеленые. Ферменты, их химическая природа, роль в метаболизме. Ферменты – это всегда специфические белки – катализаторы. Термин «специфические» означает, что объект, по отношению к которому этот термин употребляется, имеет неповторимые особенности, свойства, характеристики. Каждый фермент обладает такими особенностями, потому что, как правило, катализирует определенный вид реакций. Ни одна биохимическая реакция в организме не происходит без участия ферментов. Особенности специфичности молекулы фермента объясняются ее строением и свойствами. В молекуле фермента есть активный центр, пространственная конфигурация которого соответствует пространственной конфигурации веществ, с которыми фермент взаимодействует. Узнав свой субстрат, фермент взаимодействует с ним и ускоряет его превращение. Ферментами катализируются все биохимические реакции. Без их участия скорость этих реакций уменьшилась бы в сотни тысяч раз. В качестве примеров можно привести такие реакции, как участие РНК – полимеразы в синтезе – и-РНК на ДНК, действие уреазы на мочевину, роль АТФ – синтетазы в синтезе АТФ и другие. Обратите внимание на то, что названия многих ферментов оканчиваются на «аза». Активность ферментов зависит от температуры, кислотности среды, количества субстрата, с которым он взаимодействует. При повышении температуры активность ферментов увеличивается. Однако происходит это до определенных пределов, т.к. при достаточно высоких температурах белок денатурируется. Среда, в которой могут функционировать ферменты, для каждой группы различна. Есть ферменты, которые активны в кислой или слабокислой среде или в щелочной или слабощелочной среде. В кислой среде активны ферменты желудочного сока у млекопитающих. В слабощелочной среде активны ферменты кишечного сока. Пищеварительный фермент поджелудочной железы активен в щелочной среде. Большинство же ферментов активны в нейтральной среде.
Энергетический обмен в клетке (диссимиляция)
Энергетический обмен – это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ. Процессы расщепления органических соединений у аэробных организмов происходят в три этапа, каждый из которых сопровождается несколькими ферментативными реакциями. Первый этап – подготовительный. В желудочно-кишечном тракте многоклеточных организмов он осуществляется пищеварительными ферментами. У одноклеточных – ферментами лизосом. На первом этапе происходит расщепление белков до аминокислот, жиров до глицерина и жирных кислот, полисахаридов до моносахаридов, нуклеиновых кислот до нуклеотидов. Этот процесс называется пищеварением. Второй этап – бескислородный (гликолиз). Его биологический смысл заключается в начале постепенного расщепления и окисления глюкозы с накоплением энергии в виде 2 молекул АТФ. Гликолиз происходит в цитоплазме клеток. Он состоит из нескольких последовательных реакций превращения молекулы глюкозы в две молекулы пировиноградной кислоты (пирувата) и две молекулы АТФ, в виде которой запасается часть энергии, выделившейся при гликолизе: С6Н12O6 + 2АДФ + 2Ф → 2С3Н4O3 + 2АТФ. Остальная энергия рассеивается в виде тепла. В клетках дрожжей и растений (при недостатке кислорода) пируват распадается на этиловый спирт и углекислый газ. Этот процесс называется спиртовым брожением. Энергии, накопленной при гликолизе, слишком мало для организмов, использующих кислород для своего дыхания. Вот почему в мышцах животных, в том числе и у человека, при больших нагрузках и нехватке кислорода образуется молочная кислота (С3Н6O3), которая накапливается в виде лактата. Появляется боль в мышцах. У нетренированных людей это происходит быстрее, чем у людей тренированных. Третий этап – кислородный, состоящий из двух последовательных процессов – цикла Кребса, названного по имени Нобелевского лауреата Ганса Кребса, и окислительного фосфорилирования. Его смысл заключается в том, что при кислородном дыхании пируват окисляется до окончательных продуктов – углекислого газа и воды, а энергия, выделяющаяся при окислении, запасается в виде 36 молекул АТФ. (34 молекулы в цикле Кребса и 2 молекулы в ходе окислительного фосфорилирования). Эта энергия распада органических соединений обеспечивает реакции их синтеза в пластическом обмене. Кислородный этап возник после накопления в атмосфере достаточного количества молекулярного кислорода и появления аэробных организмов. Окислительное фосфорилирование или клеточное дыхание происходит, на внутренних мембранах митохондрий, в которые встроены молекулы-переносчики электронов. В ходе этой стадии освобождается большая часть метаболической энергии. Молекулы-переносчики транспортируют электроны к молекулярному кислороду. Часть энергии рассеивается в виде тепла, а часть расходуется на образование АТФ. Суммарная реакция энергетического обмена: С6Н12O6 + 6O2 → 6СO2 + 6Н2O + 38АТФ.
ПРИМЕРЫ ЗАДАНИЙ Часть А
А1. Способ питания хищных животных называется 1) автотрофным 3) гетеротрофным 2) миксотрофным 4) хемотрофным А2. Совокупность реакций обмена веществ называется: 1) анаболизм 3) диссимиляция 2) ассимиляция 4) метаболизм А3. На подготовительном этапе энергетического обмена происходит образование: 1) 2 молекул АТФ и глюкозы 2) 36 молекул АТФ и молочной кислоты 3) аминокислот, глюкозы, жирных кислот 4) уксусной кислоты и спирта А4. Вещества, катализирующие биохимические реакции в организме, – это: 1) белки 3) липиды 2) нуклеиновые кислоты 4) углеводы А5. Процесс синтеза АТФ в ходе окислительного фосфорилирования происходит в: 1) цитоплазме 3) митохондриях 2) рибосомах 4) аппарате Гольджи А6. Энергия АТФ, запасенная в процессе энергетического обмена, частично используется для реакций: 1) подготовительного этапа 2) гликолиза 3) кислородного этапа 4) синтеза органических соединений А7. Продуктами гликолиза являются: 1) глюкоза и АТФ 2) углекислый газ и вода 3) пировиноградная кислота и АТФ 4) белки, жиры, углеводы
Часть В
В1. Выберите события, происходящие на подготовительном этапе энергетического обмена у человека 1) белки распадаются до аминокислот 2) глюкоза расщепляется до углекислого газа и воды 3) синтезируются 2 молекулы АТФ 4) гликоген расщепляется до глюкозы 5) образуется молочная кислота 6) липиды расщепляются до глицерина и жирных кислот В2. Соотнесите процессы, происходящие при энергетическом обмене с этапами, на которых они происходят
ВЗ. Определите последовательность превращений куска сырого картофеля в процессе энергетического обмена в организме свиньи: А) образование пирувата Б) образование глюкозы В) всасывание глюкозы в кровь Г) образование углекислого газа и воды Д) окислительное фосфорилирование и образование Н2О Е) цикл Кребса и образование СО2
Часть С
С1. Объясните причины утомляемости спортсменов-марафонцев на дистанциях, и как она преодолевается?
Фотосинтез и хемосинтез
Все живые существа нуждаются в пище и питательных веществах. Питаясь, они используют энергию, запасенную, прежде всего, в органических соединениях – белках, жирах, углеводах. Гетеротрофные организмы, как уже говорилось, используют пищу растительного и животного происхождения, уже содержащую органические соединения. Растения же создают органические вещества в процессе фотосинтеза. Исследования в области фотосинтеза начались в 1630 г. экспериментами голландца ван Гельмонта. Он доказал, что растения получают органические вещества не из почвы, а создают их самостоятельно. Джозеф Пристли в 1771 г. доказал «исправление» воздуха растениями. Помещенные под стеклянный колпак они поглощали углекислый газ, выделяемый тлеющей лучиной. Исследования продолжались, и в настоящее время установлено, что фотосинтез – это процесс образования органических соединений из диоксида углерода (СО2) и воды с использованием энергии света и проходящий в хлоропластах зеленых растений и зеленых пигментах некоторых фотосинтезирующих бактерий. Хлоропласты и складки цитоплазматической мембраны прокариот содержат зеленый пигмент – хлорофилл. Молекула хлорофилла способна возбуждаться под действием солнечного света и отдавать свои электроны и перемещать их на более высокие энергетические уровни. Этот процесс можно сравнить с подброшенным вверх мячом. Поднимаясь, мяч запасается потенциальной энергией; падая, он теряет ее. Электроны не падают обратно, а подхватываются переносчиками электронов (НАДФ+ – никотинамиддифосфат). При этом энергия, накопленная ими ранее, частично расходуется на образование АТФ. Продолжая сравнение с подброшенным мячом, можно сказать, что мяч, падая, нагревает окружающее пространство, а часть энергии падающих электронов запасается в виде АТФ. Процесс фотосинтеза подразделяется на реакции, вызываемые светом, и реакции, связанные с фиксацией углерода. Их называют световой и темновой фазами. «Световая фаза» – это этап, на котором энергия света, поглощенная хлорофиллом, преобразуется в электрохимическую энергию в цепи переноса электронов. Осуществляется на свету, в мембранах гран при участии белков – переносчиков и АТФ-синтетазы. Реакции, вызываемые светом, происходят на фотосинтетических мембранах гран хлоропластов: 1) возбуждение электронов хлорофилла квантами света и их переход на более высокий энергетический уровень; 2) восстановление акцепторов электронов – НАДФ+ до НАДФ • Н 2Н+ + 4е- + НАДФ+ → НАДФ • Н; 3) фотолиз воды, происходящий при участии квантов света: 2Н2О → 4Н+ + 4е- + О2. Данный процесс происходит внутри тилакоидов – складках внутренней мембраны хлоропластов. Из тилакоидов формируются граны – стопки мембран. Так как в экзаменационных работах спрашивают не о механизмах фотосинтеза, а о результатах этого процесса, то мы и перейдем к ним. Результатами световых реакций являются: фотолиз воды с образованием свободного кислорода, синтез АТФ, восстановление НАДФ+ до НАДФ • Н. Таким образом свет нужен только для синтеза АТФ и НАДФ-Н. «Темновая фаза» – процесс преобразования СО2 в глюкозу в строме (пространстве между гранами) хлоропластов с использованием энергии АТФ и НАДФ • Н. Результатом темновых реакций являются превращения углекислого газа в глюкозу, а затем в крахмал. Помимо молекул глюкозы в строме происходит образование, аминокислот, нуклеотидов, спиртов. Суммарное уравнение фотосинтеза —
Значение фотосинтеза. В процессе фотосинтеза образуется свободный кислород, который необходим для дыхания организмов: кислородом образован защитный озоновый экран, предохраняющий организмы от вредного воздействия ультрафиолетового излучения; фотосинтез обеспечивает производство исходных органических веществ, а следовательно, пищу для всех живых существ; фотосинтез способствует снижению концентрации диоксида углерода в атмосфере. Хемосинтез – образование органических соединений из неорганических за счет энергии окислительно-восстановительных реакций соединений азота, железа, серы. Существует несколько видов хемосинтетических реакций: 1) окисление аммиака до азотистой и азотной кислоты нитрифицирующими бактериями: NH3 → HNQ2 → HNO3 + Q; 2)превращение двухвалентного железа в трехвалентное железобактериями: Fe2+ → Fe3+ + Q; 3)окисление сероводорода до серы или серной кислоты серобактериями H2S + O2 = 2H2O + 2S + Q, H2S + O2 = 2H2SO4 + Q. Выделяемая энергия используется для синтеза органических веществ. Роль хемосинтеза. Бактерии – хемосинтетики, разрушают горные породы, очищают сточные воды, участвуют в образовании полезных ископаемых.
ПРИМЕРЫ ЗАДАНИЙ Часть А
А1. Фотосинтез – это процесс, происходящий в зеленых растениях. Он связан с: 1) расщеплением органических веществ до неорганических 2) созданием органических веществ из неорганических 3) химическим превращения глюкозы в крахмал 4) образованием целлюлозы А2. Исходным материалом для фотосинтеза служат 1) белки и углеводы 3) кислород и АТФ 2) углекислый газ и вода 4) глюкоза и кислород А3. Световая фаза фотосинтеза происходит 1) в гранах хлоропластов 3) в строме хлоропластов 2) в лейкопластах 4) в митохондриях А4. Энергия возбужденных электронов в световой стадии используется для: 1) синтеза АТФ 3) синтеза белков 2) синтеза глюкозы 4) расщепления углеводов А5. В результате фотосинтеза в хлоропластах образуются: 1) углекислый газ и кислород 2) глюкоза, АТФ и кислород 3) белки, жиры, углеводы 4) углекислый газ, АТФ и вода А6. К хемотрофным организмам относятся 1) возбудители туберкулеза 2) молочнокислые бактерии 3) серобактерии 4) вирусы
Часть В
В1. Выберите процессы, происходящие в световой фазе фотосинтеза 1) фотолиз воды 2) образование глюкозы 3) синтез АТФ и НАДФ • Н 4) использование СО2 5) образование свободного кислорода 6) использование энергии АТФ В2. Выберите вещества, участвующие в процессе фотосинтеза целлюлоза 4) углекислый газ гликоген 5) вода хлорофилл 6) нуклеиновые кислоты
Часть С
С1. Какие условия необходимы для начала процесса фотосинтеза? С2. Как строение листа обеспечивает его фотосинтезирующие функции?
|
||||
Последнее изменение этой страницы: 2016-04-25; просмотров: 982; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.15.72.229 (0.013 с.) |