Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Анализаторы отработавших газов бензиновых и газобензиновых двигателей (газоанализаторы)↑ Стр 1 из 2Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Анализаторы отработавших газов бензиновых и газобензиновых двигателей (газоанализаторы) Принцип действия газоанализатора. Содержание токсичных компонентов в отработавших газах бензиновых двигателей в настоящее время определяется с помощью газоанализаторов, работающих на основе использования инфракрасного излучения. В таких газоанализаторах анализ содержания оксида, диоксида углерода и углеводородов производится с помощью недисперсионных инфракрасных лучей. Физический смысл процесса заключается в том, что эти газы поглощают инфракрасные лучи с определенной длиной волны. Так, например, оксид углерода поглощает инфракрасные лучи с длиной волны 4,7 мкм, углеводороды — 3,4, а диоксид углерода — 4,25 мкм. Следовательно, с помощью детектора, чувствительного к инфракрасным лучам с определенной длиной волны, можно определить степень их поглощения при прохождении анализируемой пробы, в результате чего можно установить концентрации того или иного компонента. Схема газоанализатора, работающего по принципу инфракрасного излучения, показана на рис. 1.14. Отработавшие газы с помощью мембранного насоса через газоотборный зонд, отделитель конденсата и фильтры закачиваются в измерительную камеру. Сравнительная камера при этом заполнена инертным газом и закрыта. Источниками инфракрасного излучения являются нихромные нагреватели, которые нагреваются до температуры около 700 °С. Отражаясь от параболических зеркал, поток инфракрасного излучения, периодически прерываемый обтюратором, приводимым во вращение от синхронного электродвигателя, проходит через измерительную и сравнительную камеры. (Обтюратор необходим для обеспечения ритмичного прерывания инфракрасного излучения.) В измерительной камере происходит поглощение инфракрасного излучения определенного компонента отработавших газов в зависимости от его концентрации. В сравнительной же камере этого не происходит, и возникает разница температур и давлений в обеих камерах. Вследствие этого изменяется емкость мембранного конденсатора 12, расположенного между камерами лучеприемника. Сигнал с конденсатора подается на усилитель 11 и далее на регистрирующий прибор. По такому принципу работают газоанализаторы типа ГИАМ 27-01, ЕТТ фирмы «Бош» и др. В зависимости от комплектации анализатор может также производить: □ определение частоты вращения коленчатого вала двигателя; □ индикацию и вывод результатов измерений в виде протокола с указанием текущей даты и времени; □ автоматическую коррекцию «нуля» при включении прибора и в дальнейшем по требованию без отключения пробозаборной системы от выхлопной трубы автомобиля; □ измерения при отрицательных температурах окружающей среды (до -20 °С) при наличии дополнительной системы подогрева проб измеряемого отработавшего газа. ТО и подготовка газоанализатора к работе ( на примере MGT 5 (МАХА). Ежедневно проводится проверка герметичности заборной системы. Для этого зонд закрывается специальной заглушкой, и в заборном приспособлении создается разрежение. При этом процессе проверяется вся линия всасывания, включая зонд. Во время процедуры проверки, продолжающейся примерно 20 с, спад давления не должен превышать 230 мбар. Для подготовки газоанализатора к работе его необходимо прогревать. В зависимости от температуры окружающей среды время прогрева газоанализатора до рабочего состояния составляет 0,5...10,0 мин. По завершении фазы прогрева происходит автоматическая регулировка газоанализатора относительно температуры окружающего воздуха, которая называется регулировкой «нуля». Если в системе газоанализатора осталось некоторое количество отработавших газов, результаты измерения могут быть искажены. Поэтому в газоанализаторе автоматически проводится проверка остаточных углеводородов. В случае отрицательных результатов проверки (наличие СН) в первую очередь необходимо проверить интервал замены фильтра и сам фильтр, затем шланги и зонд, которые могут быть загрязнены. Периодически (по мере загрязнения) необходимо заменять фильтры. Интервалы между заменами зависят от окружающих условий, а также от количества и интенсивности проверок и определяются на основании анализа статистических данных. Например, фильтр с активированным углем может меняться через 1-5 лет.
Состав выхлопных газов для исправник автомобилей разных лет выпуска. График представляет зависимость содержания СН, СО, О2, СО2 в выхлопных газах от соотношения воздух /топливо к меси. Заметим, что при обогащении смеси растет содержание СО, поэтому этот газ называется иногда индикатором обогащения. По аналогичным соображениям повышенное содержание кислорода — это индикатор обеднения. Избыток СО в выхлопных газах означает, что в цилиндрах имеет место избыток топлива или недостаток кислорода. При этом образуется богатая смесь и топливо сгорает не полностью. Возможные причины:
Рис 1. Вращение колес полноприводного автомобиля при проверке на тормозном стенде
Тормозной момент необходимо измерять на колесе, вращающемся вперед, так как тормозные свойства зависят от направления вращения. Это связано с тем, что накладки тормозных колодок и тормозные барабаны или диски притерты только в прямом направлении, поэтому тормозные свойства колеса, вращающегося в обратном направлении, окажутся другими. В связи с этим измерение тормозов должно быть повторено для каждого колеса таким образом, чтобы оно при измерении вращалось в прямом направлении. Чтобы сравнить тормозные силы обоих колес одной оси, необходимо одинаковое давление на педаль тормоза, поскольку тормозные силы левого и правого колес могут быть измерены только последовательно (один раз левое вперед и один раз правое вперед). Для этого в полноприводном автомобиле к педали тормоза обязательно подсоединяется датчик давления на педаль (сило-измерительное устройство), позволяющий поддерживать одинаковое давление на педаль при обоих измерениях. Полноприводные автомобили могут иметь отключаемый межосевой приводной вал, вискозионную или гидравлическую муфту на приводном валу, а также жестко соединенный с дифференциалами обеих осей приводной вал. Для полноприводных автомобилей с мягкой гидравлической муфтой на приводном валу достаточно примерного совпадения скорости вращения приводных двигателей роликового агрегата, поскольку при небольшом вращении приводного вала крутящие или тормозные моменты не будут передаваться через гидравлическую муфту. В этом случае достаточно простого регулирования числа оборотов приводных двигателей. При проверке тормозов полноприводного автомобиля с жесткой гидравлической муфтой в приводной оси оба колеса должны во время измерения тормозных сил вращаться строго синхронно. Полноприводный тормозной стенд IW (МАХА) Требование по синхронизации скорости вращения колес и проверка тормозной системы полноприводного автомобиля реализуются на данном стенде следующим образом. Для того чтобы иметь возможность регулировать скорость вращения колес автомобиля, на покрышки приклеивают отражающие полосы, которые воздействуют на фотоячейки, расположенные по обеим сторонам роликового агрегата стенда. Анализаторы отработавших газов бензиновых и газобензиновых двигателей (газоанализаторы) Принцип действия газоанализатора. Содержание токсичных компонентов в отработавших газах бензиновых двигателей в настоящее время определяется с помощью газоанализаторов, работающих на основе использования инфракрасного излучения. В таких газоанализаторах анализ содержания оксида, диоксида углерода и углеводородов производится с помощью недисперсионных инфракрасных лучей. Физический смысл процесса заключается в том, что эти газы поглощают инфракрасные лучи с определенной длиной волны. Так, например, оксид углерода поглощает инфракрасные лучи с длиной волны 4,7 мкм, углеводороды — 3,4, а диоксид углерода — 4,25 мкм. Следовательно, с помощью детектора, чувствительного к инфракрасным лучам с определенной длиной волны, можно определить степень их поглощения при прохождении анализируемой пробы, в результате чего можно установить концентрации того или иного компонента. Схема газоанализатора, работающего по принципу инфракрасного излучения, показана на рис. 1.14. Отработавшие газы с помощью мембранного насоса через газоотборный зонд, отделитель конденсата и фильтры закачиваются в измерительную камеру. Сравнительная камера при этом заполнена инертным газом и закрыта. Источниками инфракрасного излучения являются нихромные нагреватели, которые нагреваются до температуры около 700 °С. Отражаясь от параболических зеркал, поток инфракрасного излучения, периодически прерываемый обтюратором, приводимым во вращение от синхронного электродвигателя, проходит через измерительную и сравнительную камеры. (Обтюратор необходим для обеспечения ритмичного прерывания инфракрасного излучения.) В измерительной камере происходит поглощение инфракрасного излучения определенного компонента отработавших газов в зависимости от его концентрации. В сравнительной же камере этого не происходит, и возникает разница температур и давлений в обеих камерах. Вследствие этого изменяется емкость мембранного конденсатора 12, расположенного между камерами лучеприемника. Сигнал с конденсатора подается на усилитель 11 и далее на регистрирующий прибор. По такому принципу работают газоанализаторы типа ГИАМ 27-01, ЕТТ фирмы «Бош» и др. В зависимости от комплектации анализатор может также производить: □ определение частоты вращения коленчатого вала двигателя; □ индикацию и вывод результатов измерений в виде протокола с указанием текущей даты и времени; □ автоматическую коррекцию «нуля» при включении прибора и в дальнейшем по требованию без отключения пробозаборной системы от выхлопной трубы автомобиля; □ измерения при отрицательных температурах окружающей среды (до -20 °С) при наличии дополнительной системы подогрева проб измеряемого отработавшего газа. ТО и подготовка газоанализатора к работе ( на примере MGT 5 (МАХА). Ежедневно проводится проверка герметичности заборной системы. Для этого зонд закрывается специальной заглушкой, и в заборном приспособлении создается разрежение. При этом процессе проверяется вся линия всасывания, включая зонд. Во время процедуры проверки, продолжающейся примерно 20 с, спад давления не должен превышать 230 мбар. Для подготовки газоанализатора к работе его необходимо прогревать. В зависимости от температуры окружающей среды время прогрева газоанализатора до рабочего состояния составляет 0,5...10,0 мин. По завершении фазы прогрева происходит автоматическая регулировка газоанализатора относительно температуры окружающего воздуха, которая называется регулировкой «нуля». Если в системе газоанализатора осталось некоторое количество отработавших газов, результаты измерения могут быть искажены. Поэтому в газоанализаторе автоматически проводится проверка остаточных углеводородов. В случае отрицательных результатов проверки (наличие СН) в первую очередь необходимо проверить интервал замены фильтра и сам фильтр, затем шланги и зонд, которые могут быть загрязнены. Периодически (по мере загрязнения) необходимо заменять фильтры. Интервалы между заменами зависят от окружающих условий, а также от количества и интенсивности проверок и определяются на основании анализа статистических данных. Например, фильтр с активированным углем может меняться через 1-5 лет.
|
||||
Последнее изменение этой страницы: 2016-04-21; просмотров: 723; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.160.58 (0.01 с.) |