Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
VIII. Дополнительные сведения о треугольникахСодержание книги
Поиск на нашем сайте
Равнобедренный треугольник
С основными свойствами всякого треугольника мы познакомились в §§ 15–22. Самые главные из них следующие: сумма углов треугольника равна 180°; треугольники равны друг другу или по трем сторонам, или по двум сторонам и углу между ними, или по одной стороне и двум углам (для краткости мы обозначили эти случаи так: ССС, СУС, УСУ). Теперь познакомимся с некоторыми новыми свойствами треугольников. Предварительные упражнения Укажите равные треугольники в фигуре черт. 134, где АВ = АС, a AD – равноделящая угла А. Каковы углы ADB и ADС на черт. 134: острые или тупые? Мы знаем, что в р а в н ы х треугольниках против равных сторон лежат равные углы. Покажем, что и в о д н о м и т о м ж е т р е у г о л ь н и к е п р о т и в р а в н ы х с т о р о н л е ж а т р а в н ы е у г л ы.
Пусть у нас взят треугольник ABC (черт. 135), в котором сторона АВ равна стороне АС. Легко убедиться, что в таком треугольнике углы В и С, лежащие против равных сторон, равны между собой. Если в нашем треугольнике проведем (черт. 136) равноделящую АD угла А, она разобьет ABC на два треугольника: АDB и АDС, которые равны между собой (СУС). По этому угол В, лежащий против AD, равен углу С, лежащему против той же общей стороны. Треугольник с двумя равными сторонами называетс я р а в н о б е д р е н н ы м; его равнее стороны называются б о к о в ы м и с т о р о н а м и этого треугольника, а третья сторона – его о с н о в а н и е м. Поэтому рассмотренное сейчас свойство треугольника можно высказать короче так: в р а в н о б е д р е н н о м т р е у г о л ь н и к е у гл ы п р и о с н о в а н и и р а в н ы. Можно удостовериться и в обратном соотношении: если в треугольнике имеются равные углы, то стороны, лежащие против этих углов, – равны; или-короче сказать: в т р е у г о л ь н и к е п р о т и в р а в н ы х у г л о в л е ж а т р а в н ы е с т о р о н ы.
Чтобы убедиться в этом, возьмем треугольник (черт. 135), в котором два угла равны: уг. B = уг. C. Проведем (черт. 136) равноделящую AD; в образовавшихся двух треугольниках ADB и ADC сторона AD – общая, уг. BAD = уг. CAD, уг. В = уг. C; следовательно, треугольники равны (УСУ), и потому АВ = АС. Применения 52. Огород имеет форму равнобедренного треугольника, одна сторона которого на 40 м длиннее другой. Обвод огорода 200 м. Какова длина каждой стороны? Сколько решений имеет эта задача?
Р е ш е н и е. Если оcнование этого треуголь ника больше боковых сторон, то, обозначив его через х, имеем уравнение х + х – 40 + х – 40 = 200, из которого находим: х =280/3 = 93 1/3 м. Значит, в таком случае стороны треугольника имеют длину: 93 1/3 м, 531/3 м и 531/3 м. Если же основание к о р о ч е боковых сторон, то составляем уравнение y + y + 40 + y + 40 = 200, из которого y = 40 м. Следовательно, второе решение задачи 40 м, 80 м и 80 м.
53. Кровля, в зависимости от материала, из которого она сделана, должна составлять с горизонтальной линией следующие углы (черт. 137): Железная и цинковая... 30° Толевая.......... 18° Черепичная........ 40° Тесовая.......... 45° Соломенная........ 60° Зная это, определите, какой угол должны составлять между собой стропильные ноги двускатной крыши в каждом случае. Р е ш е н и е. Для железной кровли искомый угол равен 180° – 2? 300 = 120°; для толевой 180° – 2? 18° = 144°; для черепичной 180° – 2? 40° = 100°; для тесовой 180° – 2? 45° = 90°; для соломенной 180° – 2? 60° = 60°.
Угол, опирающийся на диаметр
Из свойств равнобедренного треугольника вытекает следующая особенность угла, вписанного в полукруг (черт. 138) или: как его иначе называют – «опирающего на диаметр»:
У г о л, о п и р а ю щ и й с я н а д и а м е т р, р а в е н п р я м о м у.
«Опирающимся на диаметр», или «вписанным в полукруг» называют такой угол, вершина которого лежит на дуге окружности, а стороны проходят через концы диаметра; таковы углы: 1 на черт. 138 и 2 на черт. 139. Желая удостовериться, что такой угол во всех случаях равен 90°, мы соединяем центр О полукруга (черт. 140) с вершиной В угла. Получаем два равнобедренных треугольника АОВ и ВОС (почему они равнобедренные?). В них уг. 2 = уг. 1 уг. 3 = уг. 4.
Отсюда уг. 2 + уг. 3 (т. е. уг. АВС) = уг. 1 + уг. 4. Но так как уг. АВС + уг. 1 + уг. 4 = 180°, то уг. ABC = 90°. Этим свойством окружности пользуются нередко для того, чтобы в изделиях проверять полуокружность помощью чертежного треугольника (как?).
Прямоугольный треугольник
В треугольнике, мы знаем, может быть только один прямой угол. Такой треугольник называется п р я м о у г о л ь н ы м. Стороны прямоугольного треугольника имеют особые названия: каждая из сторон, между которыми лежит прямой угол, называется к а т е т о м, а сторона против прямого угла называется г и п о т е-н у з о й.
Применения 54. Через точку С (черт. 141) на прямой MN нужно провести перпендикуляр. Как это сделать? Р е ш е н и е. Отложив (черт. 142) от С в обе стороны по какому-нибудь равному отрезку, т. е. CA = CB, описываем около А и В, как центров, каким-нибудь радиусом дуги; прямая PC, соединяющая точку Р пересечения дуг с точкой С, перпендикулярна к МN. Действительно, треугольники АР С и ВРС, получающиеся после соединения А и В с P, равны (СУС); следовательно, уг. АСР = уг. ВСР, а так как эти углы смежные, то они – прямые. 55. Через точку С (черт. 143) вне прямой МN про вести к этой прямой перпендикуляр. Р е ш е н и е. Около точки С, как около центра, описываем каким-нибудь радиусом дугу АВ (черт. 144);
затем около точек А и В каким-нибудь радиусом описываем дуги D. Прямая DС перпендикулярна к МN. Чтобы убедиться в этом, соединим С и D с А и В. Треугольники ACD и ВCD равны (ССС), следовательно, уг. ACD = уг. DCВ, и значит, треугольник АСО = ВСО (СУС). Отсюда уг. AОС = уг. ВОС, а так как эти углы смежные, то они прямые.
56. Объясните, почему каждая точка М прямой ВM, делящей пополам угол АВС (черт. 145) одинаково отстоит от сторон АВ и ВС угла (т. е. почему, например, MK = ML?). Р е ш е н и е. Треугольники ВML и ВМК равны (УСУ).
Равносторонний треугольник
Треугольник с тремя равными сторонами называется р а в н о с т о р о н н и м. Так как против равных сторон в одном и том же треугольнике лежат равные углы, то все углы равностороннего треугольника равны, и, следовательно, каждый из них равен. 180°: 3 = 60°. Обратно: если каждый угол треугольника равен 60°, то все стороны такого треугольника одинаковы, – потому что, против равных углов в одном и том же треугольнике лежат, равные стороны. Применения 57. Без транспортира построить угол в 60°. В 30°. В 15°. В 120°. В 75°. Р е ш е н и е. Строим равносторонний треугольник произвольных размеров; каждый его угол = 60°. Разделив угол этого треугольника пополам, получим угол в 30°. Разделив еще раз пополам, будем иметь угол в 15°. Угол в 120° = 90° + 30°. Угол в 75° =60° + 15° = 90° – 15°.
§ 52. Катет против угла в 30°
Предварительное упражнение Равносторонний треугольник разбит равноделящей одного из углов на два треугольника. Определить их углы. уг. D = 60°; а так как и уг. ABD = 60°, то треугольник ABD – равносторонний, и следовательно, AD = АВ. Но АС = 1/2 АD (почему?); отсюда АС = 1/2 АВ.
Итак, мы убедились, что к а т е т п р о т и в у г л а в 30° р а в е н п о л о в и н е г и п о т е н у з ы. Применения 58. Лестница длиною 6 м приставлена к фонарному столбу под углом 30° к нему (черт 148). Каково расстояние от основания лестницы до основания фонаря? Р е ш е н и е. Так как катет против 30° равен половине гипотенузы, то искомое расстояние = 3 м. 59. Длина стропильной ноги АС (черт. 137) вдвое больше высоты AD стропильной фермы. Определить угол наклона этой кровли к горизонту. Р е ш е н и е. Искомый угол СAD = 30°, так как только при таком условии CD равно половине АС. Пусть у нас имеется прямоугольный треугольник (черт. 146) ABC, один угол которого, именно В, равен 30°. Перегнем мысленно треугольник по катету ВС. Тогда займет положение ВСD (черт. 147), при чем CD составит продолжение АС, потому что уг. ВСD + ВСА = развернутому. Уг. СВD = уг. ABC = 30°; значит, уг. А = 60°;
Неравные стороны и углы
Мы знаем, что если в треугольнике есть равные стороны, то углы, лежащие против них, тоже равны. Рассмотрим теперь, каково соотношение между сторонами и углами в случае н е р а в н ы х сторон.
Предварительное упражнение В фигуре черт. 149 укажите какой угол больше: уг. 1 или у г. 2? В фигуре черт. 151 АВ = AD. Какой угол больше; уг. С или у г. 1? Покажем, что в т р е у г о л ь н и к е с н е р а в н ы м и с т о р о н а м и п р о т и в б о л ь ш е й с т о р о н ы л е ж и т б о л ь ш и й у г о л. Пусть в треугольнике АВС (черт. 150) сторона АС больше «стороны АВ. Отложим от вершины образуемого ими угла меньшую сторону АВ на большей АС получим точку D. Соединив D с В, имеем равнобедренный треугольник ABD, в котором угол 1 = уг. 2. Угол С меньше угла 1, а значить, подавно меньше угла. ABC. Таким образом мы убеждаемся, что против большей стороны [АС] лежит больший угол [ABC]. Нетрудно удостовериться, что и обратно: если в треугольнике имеются неравные углы, то п р о т и в б о л ь ш е г о у г л а л е ж и т б о л ь ш а я с т о р о н а.
Пусть мы знаем, что в треугольнике (черт. 151) ABC уг. А больше угла С. Тогда сторона ВС не может быть равна АВ: иначе уг. А равнялся бы углу С; не может сторона ВС быть и м е н ь ш е: АВ – тогда уг. А был бы м е н ь ш е угла С (а мы знаем, что уг. А б о л ь ш е уг. С). Не равен и не меньше, значит – больше. Применения 60. Что больше: гипотенуза или катет? Р е ш е н и е. Гипотенуза, как сторона, лежащая против самого большого угла треугольника, длиннее каждого катета. 61. Угол при вершине равнобедренного треугольника = 70°. Что длиннее: основание или боковая сторона? Р е ш е н и е. Углы при основании равны (180°-70°) / 2 = 65°. Так как угол прш вершине больше, то основание больше боковых сторон. Повторительные вопросы к §§ 48–53 Каково соотношение между углами треугольника, две стороны которого равны? – каково соотношение между сторонами треугольника, имеющего два равных угла? – Каковы соотношения в треугольнике с неравными сторонами? – С нерав-нымиуглами? – Какой треугольник называется равнобедренным? – Какая сторона такого треугольника называется боковой? – Какая называется основанием? – Как называется треугольник, имеющий два равных угла? – Сколько градусов в угле, опирающемся на диаметр? – Какой треугольник называется прямоугольным? – Что называется гипотенузой? – Катетами? – По каким признакам можно установить равенство прямоугольных треугольников? – Какой треугольник называется равносторонним? – Как велики его углы? – Каково соотношение между гипотенузой и катетом, лежащим против угла в 1/3 прямого?
|
||||||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 562; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.189.143.127 (0.011 с.) |