Радиационные эффекты влияющие на бортовую аппаратуру в космическом пространстве 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Радиационные эффекты влияющие на бортовую аппаратуру в космическом пространстве



Основные источники радиации в космическом пространстве – это Солнце и звезды. Солнце снабжает Землю протонами и электронами; от остальных звезд летит всё, включая, ядра тяжелых элементов. Землю от радиации защищает магнитное поле, собирающее пролетающие частицы в радиационные пояса земли (также называемые поясами ван Аллена). Они же – серьезная проблема для космических аппаратов, так что время, проводимое ими в радиационных поясах, стараются минимизировать.

В космическом пространстве выделяют два основных эффекта влияющих на работу микросхем бортовой аппаратуры – накопление полной поглощенной дозы (total ionizing dose, TID) и эффекты, связанные с воздействием одиночных ионизирующих частиц (Single Event Effects, SEE).

Полная поглощенная доза излучения обуславливает дрейф некоторых характеристик микросхемы, вызывающий отказы. Наиболее важные механизмы различаются от технологии к технологии; для современных микросхем актуальны радиационно-индуцированные токи утечки, а в старых технологиях важную роль играл сдвиг порогового напряжения транзистора.

Под действием ионизирующего излучения в микросхеме происходит образование электронно-дырочных пар. Эти пары в нормальных условиях достаточно быстро рекомбинируют (то есть оторвавшийся электрон захватывается атомом обратно), однако в электрическом поле дырки и электроны могут разделяться (потому что заряды противоположного знака движутся в поле в разные стороны). Основной изолятор, используемый в кремниевых микросхемах – диоксид кремния (SiO2). Подвижность электронов и дырок в SiO2 различается на несколько порядков, поэтому электроны достаточно быстро выносятся в кремний, а дырки могут накапливаться в оксиде и особенно на границе оксида с кремнием.

Если заряд накопился в подзатворном диэлектрике МОП-транзистора, он будет влиять на его работу как дополнительно приложенное положительное напряжение (или как сдвиг порогового напряжения). В результате n-канальный транзистор будет постоянно приоткрыт. В старых технологиях с толстыми подзатворными диэлектриками сдвиг порогового напряжения n-канальных транзисторов мог быть достаточно большим для того, чтобы транзистор полностью переставал закрываться, что приводило к потере работоспособности схемы. Впрочем, уменьшение порогового напряжения еще раньше приводило к тому, что общий ток потребления микросхемы превышал допустимый уровень из-за утечек.

В современных технологиях толщина подзатворного диэлектрика составляет единицы нанометров, и в них не может накопиться достаточно дырок для того, чтобы пороговое напряжение транзистора серьезно изменилось. Поэтому определяющую роль играет накопление заряда в других имеющихся в микросхеме оксидах, а именно в боковой изоляции, разделяющей соседние транзисторы, и на ее границе с подзатворным диэлектриком. Толщина изоляции связана с различными методами изготовления изоляции микросхем играет важную роль в радиационной стойкости транзистора.

Транзистор в микросхеме можно представить как суперпозицию собственно транзистора и двух расположенных с боков паразитных транзисторов, у которых роль подзатворного диэлектрика играет переходный слой между подзатворным диэлектриком основного транзистора и боковой изоляцией. Пороговое напряжение основного транзистора при воздействии дозы излучения меняется мало, а вот порог паразитных структур может уменьшаться до нуля, создавая каналы протекания тока, не управляемые затвором. Через эти каналы ток свободно течет из стока в исток – что и называется током утечки.

Утечки приводят к росту тока потребления схемы (что может быть неприемлемо в космическом аппарате, где доступная мощность весьма скромна) и даже к функциональным отказам. Например, самая распространенная проблема флэш-памяти связана не с запоминающими элементами, а с генератором высокого напряжения, используемым для перезаписи. В этом генераторе есть ключи, которые из-за утечек перестают полностью закрываться, без чего невозможно формирование напряжения, достаточного для перезаписи памяти.

Одиночные эффекты возникают при попадании в транзистор одной ионизирующей частицы (протона, нейтрона или ядра более тяжелого элемента) и делятся на «мягкие» (сбои) и «жесткие» (отказы), Последние – достаточно редкое явление, характерное для мощных схем и малоизученно. Варианты отказов включают пробой подзатворного диэлектрика и прогорание транзистора из-за возникновения проводящего канала между стоком и истоком, а также тиристорный эффект.

У «мягких» сбоев есть два основных механизма – первичная и вторичная ионизация. Первая характерна для тяжелых заряженных частиц (ТЗЧ; ими в данном контексте называют все ядра тяжелее протона), вторая – для протонов и нейтронов. Пролетая через микросхему, частица тормозится из-за взаимодействия с кристаллической решеткой и отдает ей часть своей энергии (этот процесс можно сравнить с нагревом при трении).

Энергия, выделившаяся при пролете частицы, ионизирует атомы кремния. В нормальных условиях подавляющее большинство оторванных от атомов электронов возвращается обратно, но если ионизация происходит вблизи сильного электрического поля, оно может разделить электроны и дырки. Механизм сходен с тем, что происходит при накоплении дозы, но носители заряда не могут накапливаться в кремнии, и длительность одиночных эффектов измеряется не в месяцах, а в пикосекундах.

Сильное электрическое поле в кремнии – это истоковый pn-переход закрытого транзистора, разделение заряда вблизи которого приводит к тому, что носители заряда одного знака попадают в линии земли/питания, а второго – на сток транзистора. С точки зрения внешнего наблюдателя результат процесса выглядит как импульс тока с передним фронтом в несколько десятков пикосекунд и задним – в несколько сотен. Точные параметры импульса зависят от многих факторов, в том числе технологии изготовлении микросхемы, угла падения частицы и т.д.

Если проинтегрировать получившийся импульс тока по времени, мы получим полный заряд, выделившийся в результате попадания ТЗЧ. Минимальный заряд, приводящий к сбою, называется критическим зарядом сбоя (critical charge). Критический заряд зависит от параметров как пораженной схемы, так и падающей частицы; кроме того, его очень сложно измерить экспериментально, поэтому он обычно применяется для моделирования взаимодействия схемы и частицы и для сравнительного моделирования сбоеустойчивости разных схем.

Энерговыделение принято выражать при помощи линейной передачи энергии (ЛПЭ; английский термин – Linear Energy Transfer, LET), измеряемой в МэВ×см2/мг или точнее, в (МэВ/(мг/см3))/см. Одна единица ЛПЭ – это количество энергии выделяемое пролетающей частицей за сантиметр пролетаемого расстояния на единицу плотности вещества, через которое летит частица. Определение на первый взгляд весьма запутанное, но выбранная именно таким образом единица измерения обладает несколькими важными достоинствами: во-первых, численное значение относительно просто измерить экспериментально; во-вторых, в-третьих, применяемые на практике значения обычно укладываются в диапазон от единицы до сотни.

ЛПЭ – величина не постоянная, то есть параметры пролетающей частицы у крышки корпуса микросхемы, на границе кристалла и непосредственно у транзистора под многочисленными слоями будут разными. Из этого, однако, не следует, что более толстый корпус может помочь – зависимость ЛПЭ от дистанции, пройденной в кремнии, обычно имеет максимум на некоторой глубине (так называемый Брэгговский пик). Подобный эффект используется в радиационной терапии и в некоторых операциях изготовления микросхем: параметры имплантируемых ионов подбираются таким образом, чтобы они останавливались на определенной глубине и создавали на глубине слой с большим уровнем легирования.

Протоны и нейтроны имеют очень маленькую ЛПЭ (приблизительно 0,01 МэВ×см2/мг), однако при пролете высокоэнергетического протона/нейтрона через кремний существует вероятность ядерной реакции, продуктами которой являются ионы с коротким пробегом, но большой ЛПЭ (до 15 МэВ×см2/мг). В технологических процессах с не алюминиевой, а медной металлизацией (180 нм и ниже), описаны механизмы взаимодействия протонов с вольфрамом, применяемым для контактов первого уровня (и расположенным, таким образом, прямо над чувствительными pn-переходами). ЛПЭ продуктов таких реакций может достигать 30 МэВ×см2/мг.

Характерные минимальные ЛПЭ падающих частиц, приводящие к сбою – в пределах десятки для технологий с проектными нормами 500-250 нм, и порядка единицы для суб-100 нм технологий, в которых критический заряд может быть так мал, что даже первичная ионизация от протонов и нейтронов способна вызвать сбой. Кроме того, маленький критический заряд сбоя приводит к тому, что достаточный заряд может разделиться при пролете частицы не только через обратно смещенный стоковый pn-переход, но и через несмещенный истоковый, что существенно увеличивает уязвимую площадь на кристалле.

 

Короткий импульс тока воспринимается микросхемой как импульсная помеха, и, если его амплитуда достаточно велика, он может привести к переключению элемента, стоящего за пораженным транзистором – это и есть радиационно-индуцированный сбой. Комбинационные и аналоговые схемы в момент прохождения импульса тока выдают неверный результат, а запоминающие элементы переключаются насовсем. Таким образом, наиболее уязвимой частью микропроцессора является кэш-память: ее на кристалле много сбоев, и сбои в ней не проходят сами по себе.

Сбои в комбинационной логике проходят несколько проще сбоев в запоминающих элементах – здесь нет обратной связи, и повышение потенциала пораженного узла напрямую передается на следующий каскад. В случае, если амплитуда напряжения достаточно велика, следующий каскад переключается – и дальше по схеме распространяется переходный процесс (single event transient, «иголка» на российском жаргоне). Со сбоями в комбинационной логике связаны дополнительные эффекты, влияющие на то, как схема реагирует на сбой. С одной стороны, есть эффект логического маскирования: не все изменения входных состояний влияют на выход схемы (например, переключение одного из входов элемента «2ИНЕ» не влияет на выход, если на втором входе логический ноль). С другой стороны, если выход пораженной схемы нагружен несколькими элементами, то сбой попадет на входы каждого из них (представьте себе сбой в самом начале дерева тактовых сигналов). И наконец, временное маскирование: на выходе любой комбинационной схемы стоит триггер, запоминающий значения в определенные промежутки времени. При работе на малых частотах вероятность того, что импульс целиком придется на время, в которое триггер ничего не запоминает, довольно велика, однако с ростом частоты длительность импульса (от нескольких сотен пикосекунд до наносекунды) оказывается сравнима с периодом тактового сигнала, и на больших тактовых частотах интенсивность значащих сбоев в комбинационной логике может быть даже выше интенсивности сбоев в запоминающих элементах (кстати, в стоящих на выходах комбинационных схем триггерах тоже могут быть сбои).

Эффективный диаметр трека ТЗЧ – порядка микрона, что существенно больше размеров логических элементов в современных технологиях. Поэтому от попадания одной частицы могут сбиться одновременно несколько элементов, например ячеек кэш-памяти. В технологии 65 нм «несколько» могут быть десятью, что создает существенные сложности в применении помехоустойчивых кодов и заставляет серьезно модифицировать топологию элементов микросхемы.
При попадании ТЗЧ в транзистор может возникнуть не только однократный сбой, но и условно-жесткий отказ, вызванный тиристорным эффектом («защелка» или latchup).

При попадании ТЗЧ индуцированный импульс тока может привести к открыванию биполярных транзисторов и попаданию паразитной тиристорной структуры в низкоомное состояние. Результатом будет формирование короткого замыкания между землей и питанием, потеря работоспособности пораженного элемента и резкий рост тока потребления, способный привести к «выгоранию» пораженного элемента и функциональному отказу. Тиристорный эффект относят к условно-жестким, потому что его воздействие можно остановить при помощи сброса питания с пораженной микросхемы. Эта мера, однако, весьма неудобна и, при большом количестве отказов, неприменима; тиристорный эффект является одной из основных проблем разработчиков радиоэлектронной аппаратуры для космоса, особенно если они по каким-то причинам используют коммерческие микросхемы вместо специально разработанных.



Поделиться:


Последнее изменение этой страницы: 2021-12-09; просмотров: 40; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.93.210 (0.007 с.)