Мы поможем в написании ваших работ!
ЗНАЕТЕ ЛИ ВЫ?
|
Физические и химические свойства металлов. Цвет, плотность металла, температура плавления, теплопроводность, тепловое расширение, теплоемкость, электропро-водность. Магнитные свойства.
Содержание книги
- Классификация материалов, их роль в создании материальной базы современной цивилизации.
- Физические и химические свойства металлов. Цвет, плотность металла, температура плавления, теплопроводность, тепловое расширение, теплоемкость, электропро-водность. Магнитные свойства.
- Деформации растяжения, изгиба, кручения, среза.
- Фазы в металлич. сплавах. Понятие фазы. Тв. р-ры, химич. соедин. и механич. смеси.
- Основы теории термообработки стали. Критич. температуры. Превращ. структуры стали при нагреве. Структурные превращения при охлаждении стали.
- Дефекты при отжиге и нормализации. Дефекты при закалке.
- Номенклатура конструкционных пластмасс
- Поликарбонаты. Газонаполненные пластмассы.
- Материалы на основе древесины. Структура и свойства древесины
- Модифицирование цельной древесины. Классификация материалов на основе древесины.
- Минералы и материалы на их основе. Твердые и сверхтвердые материалы.
Похожие статьи вашей тематики
. ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВАФизические свойства. К физическим свойствам металлов относят цвет, плотность, температуру плавления, теплопроводность, тепловое расширение, теплоемкость, электропроводность, магнитные свойства и др.Цветом называют способность металлов отражать световое излучение с определенной длиной волны. Например, медь имеет розово-красный цвет, алюминий - серебристо-белый.Плотность металла характеризуется его массой, заключенной в единице объема. По плотности все металлы делят на легкие (менее 4500 кг/м3) и тяжелые. Плотность имеет большое значение при создании различных изделий. Например, в самолето- и ракетостроении стремятся использовать более легкие металлы и сплавы (алюминиевые, магниевые, титановые), что способствует снижению массы изделий. Температурой плавления называют температуру, при которой металл переходит из твердого состояния в жидкое. По температуре плавления различают тугоплавкие металлы (вольфрам 3416°С, тантал 2950°С, титан 1725°С, и др.) и легкоплавкие (олово 232°С, свинец 327°С, цинк 419,5°С, алюминий 660°С). Температура плавления имеет большое значение при выборе металлов для изготовления литых изделий, сварных и паяных соединений, термоэлектрических приборов и других изделий. В единицах СИ температуру плавления выражают в градусах Кельвина (К).Теплопроводностью называют способность металлов передавать тепло от более нагретых к менее нагретым участкам тела. Серебро, медь, алюминии обладают большой теплопроводностью. Железо имеет теплопроводность примерно в три раза меньше, чем алюминий, и в пять раз меньше, чем медь. Теплопроводность имеет большое значение при выборе материала для деталей. Например, если металл плохо проводит тепло, то при нагреве и быстром охлаждении (термическая обработка, сварка) в нем образуются трещины. Некоторые детали машин (поршни двигателей, лопатки турбин) должны быть изготовлены из материалов с хорошей теплопроводностью. В единицах СИ теплопроводность имеет размерность Вт/(м∙К).Тепловым расширением называют способность металлов увеличиваться в размерах при нагревании и уменьшаться при охлаждении. Тепловое расширение характеризуется коэффициентом линейного расширения α=(l2-l1)/[l1(t2-t1)], где l1 и l2длины тела при температурах t1 и t2. Коэффициент объемного расширения равен 3α. Тепловые расширения должны учитываться при сварке, ковке и горячей объемной штамповке, изготовлении литейных форм, штампов, прокатных валков, калибров, выполнении точных соединений и сборке приборов, при строительстве мостовых ферм, укладке железнодорожных рельс. Теплоемкостью называют способность металла при нагревании поглощать определенное количество тепла. В единицах СИ имеет размерность Дж/К. Теплоемкость различных металлов сравнивают по величине удельной теплоемкости - количеству тепла, выраженному в больших калориях, которое требуется для повышения температуры 1 кг металла на 1°С (в единицах СИ - Дж/(кг∙К).Способность металлов проводить электрический ток оценивают двумя взаимно противоположными характеристиками -электропроводностью и электросопротивлением. Электрическая проводимость оценивается в системе СИ в сименсах (См), а удельная электропроводность - в Cм/м, аналогично электросопротивление выражают в омах (Ом), а удельное электросопротивление — в Ом/м. Хорошая электропроводность необходима, например, для токонесущих проводов (медь, алюминий). При изготовлении электронагревателей приборов и печей необходимы сплавы с высоким электросопротивлением (нихром, константан, манганин). С повышением температуры металла его электропроводность уменьшается, а с понижением - увеличивается.Магнитные свойства характеризуются абсолютной магнитной проницаемостью или магнитной постоянной, т. е. способностью металлов намагничиваться. В единицах СИ магнитная постоянная имеет размерность Гн/м. Высокими магнитными свойствами обладают железо, никель, кобальт и их сплавы, называемые ферромагнитными. Материалы с магнитными свойствами применяют в электротехнической аппаратуре и для изготовления магнитов. Химические свойства. Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, щелочей и др. Чем легче металл вступает в соединение с другими элементами, тем быстрее он разрушается. Химическое разрушение металлов под действием на их поверхность внешней агрессивной среды называют коррозией.Металлы, стойкие к окислению при сильном нагреве, называют жаростойкими или окалиностойкими. Такие металлы применяют для изготовления деталей, которые эксплуатируются в зоне высоких температур.Сопротивление металлов коррозии, окалинообразованию и растворению определяют по изменению массы испытуемых образцов на единицу поверхности за единицу времени.Химические свойства металлов обязательно учитываются при изготовлении тех или иных изделий. Особенно это относится к изделиям или деталям, работающим в химически агрессивных средах.
Химические свойства.
Химические свойства. Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, щелочей и др. Чем легче металл вступает в соединение с другими элементами, тем быстрее он разрушается. Химическое разрушение металлов под действием на их поверхность внешней агрессивной среды называют коррозией. Металлы, стойкие к окислению при сильном нагреве, называют жаростойкими или окалиностойкими. Такие металлы применяют для изготовления деталей, которые эксплуатируются в зоне высоких температур. Сопротивление металлов коррозии, окалинообразованию и растворению определяют по изменению массы испытуемых образцов на единицу поверхности за единицу времени. Химические свойства металлов обязательно учитываются при изготовлении тех или иных изделий. Особенно это относится к изделиям или деталям, работающим в химически агрессивных средах.
18.Основные механические свойства металлов. Понятие о деформации и напряжениях в материалах.
| | | | Механические свойства характеризуют способность металлов и сплавов сопротивляться действию приложенных к ним нагрузок, а механические характеристики выражают эти свойства количественно. Основными свойствами металлических материалов являются; прочность, пластичность (или вязкость), твердость, ударная вязкость, износоустойчивость, ползучесть и др.Механические характеристики материалов определяются при механических испытаниях, которые в зависимости от характера действия нагрузки во времени делятся на статические, динамические и повторно-переменные.В зависимости от способа приложения внешних сил (нагрузок) различают испытания на растяжение, сжатие, изгиб, кручение, ударный изгиб и т. п.Основные механические характеристики металлов и сплавов.Временное сопротивление (предел прочности, предел прочности при растяжении— условное напряжение, соответствующее наибольшей нагрузке, предшествующей разрушению образца.Истинное сопротивление разрыву (действительное напряжение) — напряжение, определяемое отношением нагрузки в момент разрыва к площади поперечного сечения образца в месте разрыва.Предел текучести (физический) — наименьшее напряжение, при котором образец деформируется без заметного увеличения растягивающей нагрузки.Предел текучести (условный) — напряжение, при котором остаточное удлинение достигает 0,2% длины участка образца, удлинение которого принимается в расчет при определении указанной характеристики.Предел пропорциональности (условный)— напряжение, при котором отклонение от линейной зависимости между нагрузкой и удлинением достигает такой величины, что тангенс угла наклона, образованного касательной к кривой деформации (в рассматриваемой точке), с осью нагрузок увеличивается на 50% своего значения на линейном упругом участке. Допускается увеличение тангенса угла наклона на 10 или 25%.Предел упругости— условное напряжение, соответствующее появлению остаточной деформации. Допускается определение предела упругости с допусками до 0,005%, тогда соответственно будет обозначаться.Относительное удлинение после разрыва— отношение приращения длины образца после разрыва к его первоначальной расчетной длине. Различают относительные удлинения, полученные при испытании на образцах с пятикратным и десятикратным отношением длины к диаметру. Допускаются и другие отношения, например 2,5, при испытании отливок.Относительное сужение после разрыва — отношение площади поперечного сечения образца в месте разрыва к начальной площади его поперечного сечения.Указанные характеристики механических свойств определяются при испытании материалов на растяжение по методам, изложенным в ГОСТ 1497—61, на цилиндрических и плоских образцах, формы и размеры которых установлены тем же стандартом. Испытания на растяжение при повышенных температурах (до 1200°С) установлены ГОСТ 9651—73, на дли-тельную прочность— ГОСТ 10145—62.Модуль нормальной упругости— отношение напряжения к соответствующему ему относительному удлинению при растяжении (сжатии) в пределах упругих деформаций (закон Гука).Ударная вязкость— механическая характеристика вязкости металла — определяется работой, расходуемой для ударного излома на маятниковом копре образца данного типа и отнесенной к рабочей площади поперечного сечения образца в месте надреза. Испытания при нормальной температуре проводятся по ГОСТ 9454—60, при пониженных — по ГОСТ 9455—60 и при повышенных — по ГОСТ 9656—61.Предел выносливости (усталости) —максимальное напряжение, при котором материалы образца выдерживают без разрушения заданное количество симметричных циклов (от +Р до — Р), принимаемое за базу. Количество циклов задается техническими условиями и представляет большое число. Методы испытания металлов на выносливость регламентируются по ГОСТ 2860—65.Предел прочности при сжатии — отношение разрушающей нагрузки к площади поперечного сечения образца до испытания.Условный предел ползучести— напряжение, вызывающее заданное удлинение образца (суммарное или остаточное) за установленный промежуток времени при заданной температуре. Твердость по Бринелю - определяется на твердомере ТШ путем вдавливания стального закаленного шарика р. испытуемый металл или сплав.Твердость по Роквеллу HRA, HRB и HRC определяется вдавливанием в металл стального шарика диаметром ~ 1,6мм или конуса.(алмазно или твердосплавного) с утлом при вершине 120° на твердомере ТК. В зависимости от условий определения, которые стандартизованы ГОСТ 9013—68, различают три значения HR: HRA — для очень твердых материалов (шкала А) — испытание производится вдавливанием алмазного конуса; HRB — для мягкой стали (шкала В) — стального шарика; HRC — для закаленной стали (шкала С) — твердосплавного или алмазного конуса.Глубина проникновения алмазного конуса при испытаниях в металле небольшая, что позволяет испытывать более тонкие изделия, чем при определении твердости по Бринелю, Твердость но Роквеллу является условной характеристикой, значение которой отсчитывается по шкале прибора.Твердость по Виккерсу HV определяется вдавливанием алмазной стандартной правильной четырехгранной пирамиды. Определение числа твердости производится путем измерения длины диагоналей (среднее арифметическое суммы двух диагоналей) и пересчета по формулеСтандартными нагрузками в зависимости от толщины образца приняты 5, 10, 20, 30, 50 и 100 кгс. Выдержка времени под нагрузкой берется для черных металлов 10—15 секунд, для цветных — 28—32. Соответственно символ HV 10/30-500 означает: 500 — число твердости; 10 — нагрузку и 30 — время выдержки.Метод Виккерса применяется для измерений твердости деталей малых сечений и твердых тонких поверхностных слоев цементированных, азотированных или цианированных изделий.
|
|