Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Связь состава, структуры и свойств строительных материалов.↑ Стр 1 из 4Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Связь состава, структуры и свойств строительных материалов. Взаимосвязь состава,структура и свойства материала Свойства материалов в большей мере связаны с особенностями их строения и со свойствами тех веществ, из которых данный материал состоит. В свою очередь, строение материала зависит: для природных материалов — от их происхождения и условий образования, для искусственных — от технологии производства и обработки материала. Каждый строительный материал характеризуется химическим, минеральным и фазовым составами. В зависимости от химического состава все материалы делят: на органические (древесные, битум, пластмассы и т. п.), минеральные (бетон, цемент, кирпич, природный камень и т. п.) металлы (сталь, чугун, алюминий). Каждая из этих групп имеет свои особенности. Так, все органические материалы горючи, а минеральные — огнестойки; металлы хорошо проводят электричество и теплоту. Химический состав позволяет судить и о других технических характеристиках (биостойкости, прочности и т. д.). Химический состав некоторых материалов (неорганические вяжущие вещества, каменные материалы, стекло) часто выражают количеством содержащихся в них оксидов. Оксиды, химически связанные между собой, образуют минералы, которые характеризуют минеральный состав материала. Зная минералы и их количество в материале, можно судить о свойствах материала. Например, способность неорганических вяжущих веществ твердеть и сохранять прочность в водной среде, обусловлена присутствием в них минералов силикатов, алюминатов, ферритов кальция, причем при большом их количестве ускоряется процесс твердения и повышается прочность цементного камня. При характеристике фазового состава материала выделяют: твердые вещества, образующие стенки пор («каркас» материала), и поры, заполненные воздухом и водой. Фазовый состав материала и фазовые переходы воды в его порах оказывают влияние на все свойства и поведение материала при эксплуатации. Не меньшее влияние на свойства материала оказывают его макро- и микроструктура и внутреннее строение веществ, составляющих материал, на молёкулярно ионном уровне. Макроструктура материала — строение, видимое невооруженным глазом или при небольшом увеличении. Микроструктура материала — строение, видимое под микроскопом. Внутреннее строение веществ изучают методами рентгеноструктурного анализа, электронной микроскопии и т. д. Во многом свойства материала определяют количество, размер и характер пор. Например, пористое стекло (пеностекло), в отличие от оконного стекла, непрозрачное и очень легкое. Форма и размер частиц твердого вещества также влияют на свойства материала. Так, если из расплава обычного стекла вытянуть тонкие волокна, то получится легкая и мягкая стеклянная вата. В зависимости от формы и размера частиц и их строения макроструктура твердых строительных материалов может быть: зернистой (рыхлозернистой или конгломератной); ячеистой (мелкопористой); волокнистой; слоистой. Рыхлозернистые материалы состоят из отдельных, не связанных одно с другим зерен (песок, гравий, порошкообразные материалы для мастичной теплоизоляции и засыпок и др.). Конгломератное строение, когда зерна прочно соединены между собой, характерно для различных видов бетона, некоторых видов природных и керамических материалов и др. Ячеистая (мелкопористая) структура характеризуется наличием макро- и микропор, свойственных газо- и пенобетонам, ячеистым пластмассам, некоторым керамическим материалам. Волокнистые и слоистые материалы, у которых волокна (слои) расположены параллельно одно другому, обладают различными свойствами вдоль и поперек волокон (слоев). Это явление называется анизотропией, а материалы, обладающие такими свойствами, — анизотропными. Волокнистая структура присуща древесине, изделиям из минеральной ваты, а слоистая — рулонным, листовым, плитным материалам со слоистым наполнителем (текстолит, бумопласт и др.). По взаимному расположению атомов и молекул материалы могут, быть кристаллическими иаморфными. Неодинаковое строение кристаллических и аморфных веществ определяет и различия в их свойствах. Аморфные вещества, обладая нерастраченной внутренней энергией кристаллизации, химически более активны, чем кристаллические такого же состава (например, аморфные формы кремнезема — пемзы, туфы, трепелы, диатомиты и кристаллический кварц). Существенное различие между аморфными и кристаллическими веществами состоит в том, что кристаллические вещества при нагревании имеют определенную температуру плавления (при постоянном давлении), а аморфные размягчаются и постепенно переходят в жидкое состояние. Прочность аморфных веществ, как правило, ниже кристаллических, поэтому для получения материалов повышенной прочности специально проводят кристаллизацию, например стекол при получении стеклокристаллических материалов — ситаллов и шлакоситаллов. Неодинаковые свойства могут наблюдаться у кристаллических материалов одного и того же состава, если они формируются в разных кристаллических формах, называемых модификациями (явление полиморфизма). Например, полиморфные превращения кварца сопровождаются изменением объема. Изменением свойств материала путем изменения кристаллической решетки пользуются при термической обработке металлов (закалке или отпуске). Требования, предъявляемые к современным строительным материалам. *Прочность. *Долговечность, морозостойкость, коррозионностойкость, выносливость, трещенностойкость. *Конструктивные качества ККК-R(прочность)/ρ(плотность)(10^3 см) *ККК - характеризует длину нити в сантиметрах имеющую единичное поперечное сечение и при которой она разрушится под действием собственной массы. *Энергосберегающие(ресурсы). *Эстетичность. Физические свойства строительных материалов. Истинная плотность. Масса единицы объема материала без пор. 2.Средняя плотность. Масса единицы объема материала в естественном состоянии(с порами). 3.Пористость материала - это относительный объем пор в материале. 4.Вотопоглащение – это способность материала при контакте с водой впитывать ее и удерживать в своих порах. 5.Гигроскопичность – способность материала впитывать влагу из окружающего воздуха. 6.Усушка(усадка) – это способность материала уменьшать свои линейные или объемные размеры, при удалении воды из пор, в следствии сближения частиц вещественных частях материала. 7.Набухание(разбухание) – это способность материала увеличивать свои линейные и объемные размеры при заполнении пор водой, в следствии раздвижения частиц вещественной части материала. Гигроскопичность определяется порами размеры которых 8.Капилярный подсос – это способность материала при контакте с влажной поверхностью впитывать влагу. 9.Теплопровоность – способность материала пропускать тепло через свою толщу.[]. Формула Некрасова. коэффициент теплопроводности характеризует количество тепла в ватах прошедшее через материал толщиной 1м при разности температур поверхности 1. 10.Морозостойкость-способность пористого материала насыщенного водой выдерживать определенное количество циклов замораживания и отмораживания без потери прочности(по нормам допускается потеря прочности не более 5% по сравнению с контрольными образцами).F100,F150. Цикл-это 4 часа замораживания насыщенного водой образца при Т=-15 и 4 часа оттаивания при Т=20. 11.Водопроницаемость- это способность материала пропускать воду под давлением.W2,W4,W6,W8-цифры показывают давление при котором образец не пропускает воду. Воздушные вяжущие Воздушные вяжущие вещества характеризуются тем, что при взаимодействии с водой, твердеют и длительно сохраняют прочность лишь в воздушной среде. При систематическом увлажнении бетоны, изделия и конструкции на воздушных вяжущих сравнительно быстро теряют прочность и разрушаются. К воздушным вяжущим веществам относят гипсовые и магнезиальные вяжущие, а также воздушную известь. Кислотостойкие вяжущие К кислотостойким вяжущим веществам относится кислотоупорный кварцевый кремнефтористый цемент, представляющий собой тонкомолотую смесь кварцевого песка и кремнефтористого натрия, затворяемую водным раствором силиката натрия или калия. Это вяжущее после начального твердения в воздушной среде может длительное время сопротивляться агрессивному воздействию неорганических и органических кислот, кроме фтористо-водородной.
Свойства извести скорость гашения; тонкость помола; водопотребность; прочность. Применение извести Для приготовления цементно-известковых, известково-песчаных и известково-глинистых растворов. Для штукатурных работ. Для малярных составов. Известь, именуемая воздушной, в сухих условиях дает возможность материалам отвердевать и сохранять приобретенную ими прочность. Воздушная непогашенная известь, исходя из доли входящего в состав оксида магния, бывает кальциевой (доля менее 5%), магнезиальной (от 5% до 20%), доломитовой (от 20% до 40%). Гашеная и негашеная извести — это виды воздушной извести. Получают гашеную известь путем добавления воды в кальциевую, магнезиальную или доломитовую. Основа негашеной извести — это окись кальция, гашеной — гидрат окиси кальция и вода. Известь также можно разделить на: комовую (дробленную) и порошкообразную. Известковый порошок получают при перемалывании или гидратации комовой извести. Такую порошкообразную известь делят на чистую, т.е. без добавления дополнительных компонентов, и на известь с добавками. В зависимости от времени, требуемого для гашения негашеной извести, существуют: быстрогасящиеся (< 8 минут) среднегасящиеся (< 25 минут) медленногасящиеся (> 25 минут) Содержание таких примесей, как глина и песок, также влияют на виды известей. Присутствие примесей влияет на пластичность, и потому известь можно разделить на жирную и тощую. Для извести с содержанием оксида магния менее 5%, или иными словами кальциевой, при ее использовании в технологических целях допустимо наличие негашеных включений не более чем 20%. Обычно для таких целей используется известь 3-го сорта и только при согласовании с заказчиком. Допустимое значение содержания воды в в негашеной извести — 2%, влажность — не более 5%. Сорт любого вида извести определяется несколькими показателями. При наличии показателей, соответствующих разным сортам, определение сортности делается по наименьшему из них. Согласно ГОСТу 6613 определяется соответствие измельчения частиц порошкообразной извести. При проверке используются сита под номерами 02 и 008. Необходимое условие для прохождения ГОСТа — это просеивание проб извести 98,5% и 85% от общей массы соответственно. Принятый максимально допустимый размер комков для дробленой извести — 20 мм. Для такого параметра как прочность воздушной извести норма не принята, т.к. ее значение невелико. Получение готового продукта (извести) начинается с добычи сырья. Сырье подготавливают и обжигают. Затем происходит процесс гашения или перемалывания, в зависимости от вида извести и принятой на производстве технологии. При добыче основного сырьевого компонента, известняка, используют открытый метод разработки месторождений. Для получения известняка проводятся взрывные работы. И исходя от удаленности карьеров от заводов-переработчиков, сырье доставляют различными видами транспорта (автомобильный, железнодорожный или водный). Доставленное сырье проходит на заводах предварительную подготовку. Куски различных размеров приводят к примерно одинаковому размеру. Затем их отправляют в шахтные или вращающиеся печи на обжиг. Кроме печей, существуют специальные установки, где процесс обжига проходит во взвешенном состоянии или на спекательных решетках. Качество сырья влияет на такие условия обработки сырья, как температура, производительность и приобретаемые свойства готового продукта. Обжиг сырья осуществляется при температуре от 1000 до 1200 градусов, а доломитов — от 750 до 900 градусов. Требования, предъявляемые к материалам для изготовления бетона. Цемент. Для приготовления бетонных смесей применяются, портландцемент, пуццолановый портландцемент, шлакопорт-ландцемент и др Вода. Вода для затворения бетонных смесей не должна содержать в значительных количествах вредных примесей, к которым относятся кислоты, сульфаты, жиры, растительные масла, сахар и различные другие органические вещества. Песок. Объем пустот в песке должен быть возможно меньшим, чтобы для его заполнения требовалось меньше цементного теста. Объем пустот будет наименьшим тогда, когда пески состоят из зерен разного размера, потому что промежутки между крупными песчинками в таком песке заполняются более мелкими. *количество слюды в песке для бетона не должно превышать 0,5% *сульфаты не более 1%. *Глинистые, илистые и пылевидные частицы не более 5% *Органические примеси. Содержание органических примесей устанавливается специальным колориметрическим методом исследования - по цвету жидкости над песком, залитым 3%-ным раствором едкого натра. Цвет жидкости должен, быть не темнее светложелтого. Гравий. Количество примесей в гравии (глины и пыли) не должно превышать 2%; при наличии их свыше указанного гравий промывают водой. Содержание сернистых и сернокислых примесей допускается в количестве не более 1% Требования, к мелкому заполнителю для бетона. В качестве мелкого заполнителя для приготовления тяжелого бетона могут применяться пески, отвечающие требованиям ГОСТ 10268—80 и ГОСТ 8736—77, природные (в естественном состоянии), природные фракционированные и природные обогащенные; дробленые и дробленые фракционированные. В зависимости от зернового состава песок делят на четыре группы: крупный, средний, мелкий и очень мелкий. Пустотность заполнителей должна быть минимальной. Для этого в пустотах между крупными зернами должны находится более мелкие Требования, к крупному заполнителю для бетона. Крупные заполнители имеют зерна размером свыше 5 мм и крупный заполнители суммарно могут занимать до 80 процентов объема, что существенно влияет на эксплуатационные свойства бетона Гравий-представляет собой камни округлой формы с гладко Щебень- зерна которого имеют угловатую форму. Поверхность зерен щебня более шероховатая, чем у гравия, поэтому и сцепление щебня с цементным камнем лучше Механические свойства крупного заполнителя существенно влияют на прочностные характеристики бетона. Если у заполнителя низкие показатели по прочности, то даже применение цемента с высокими марками не позволит получить высокопрочный бетон, то есть заложенные в примененном цементе высокие прочностные параметры окажутся неиспользованными. Зерна щебня и гравия подразделяют на четыре фракции по крупности размеров зерен в диапазоне от 5-10мм до 40-70мм. В практике эти заполнители поступают смесью из двух и более фракций. Для щебня и гравия определены ограничения по максимальному размеру зерен. Они не должны быть крупнее 1/4 части размера минимального сечения бетонной конструкции и 3/4 минимального расстояния между стержнями арматуры в железобетонных конструкциях. При изготовлении малоармированных фундаментов, эстакад, стенок допускается использование гравия с зернами размером до 120-150мм (12-15см) Связь состава, структуры и свойств строительных материалов. Взаимосвязь состава,структура и свойства материала Свойства материалов в большей мере связаны с особенностями их строения и со свойствами тех веществ, из которых данный материал состоит. В свою очередь, строение материала зависит: для природных материалов — от их происхождения и условий образования, для искусственных — от технологии производства и обработки материала. Каждый строительный материал характеризуется химическим, минеральным и фазовым составами. В зависимости от химического состава все материалы делят: на органические (древесные, битум, пластмассы и т. п.), минеральные (бетон, цемент, кирпич, природный камень и т. п.) металлы (сталь, чугун, алюминий). Каждая из этих групп имеет свои особенности. Так, все органические материалы горючи, а минеральные — огнестойки; металлы хорошо проводят электричество и теплоту. Химический состав позволяет судить и о других технических характеристиках (биостойкости, прочности и т. д.). Химический состав некоторых материалов (неорганические вяжущие вещества, каменные материалы, стекло) часто выражают количеством содержащихся в них оксидов. Оксиды, химически связанные между собой, образуют минералы, которые характеризуют минеральный состав материала. Зная минералы и их количество в материале, можно судить о свойствах материала. Например, способность неорганических вяжущих веществ твердеть и сохранять прочность в водной среде, обусловлена присутствием в них минералов силикатов, алюминатов, ферритов кальция, причем при большом их количестве ускоряется процесс твердения и повышается прочность цементного камня. При характеристике фазового состава материала выделяют: твердые вещества, образующие стенки пор («каркас» материала), и поры, заполненные воздухом и водой. Фазовый состав материала и фазовые переходы воды в его порах оказывают влияние на все свойства и поведение материала при эксплуатации. Не меньшее влияние на свойства материала оказывают его макро- и микроструктура и внутреннее строение веществ, составляющих материал, на молёкулярно ионном уровне. Макроструктура материала — строение, видимое невооруженным глазом или при небольшом увеличении. Микроструктура материала — строение, видимое под микроскопом. Внутреннее строение веществ изучают методами рентгеноструктурного анализа, электронной микроскопии и т. д. Во многом свойства материала определяют количество, размер и характер пор. Например, пористое стекло (пеностекло), в отличие от оконного стекла, непрозрачное и очень легкое. Форма и размер частиц твердого вещества также влияют на свойства материала. Так, если из расплава обычного стекла вытянуть тонкие волокна, то получится легкая и мягкая стеклянная вата. В зависимости от формы и размера частиц и их строения макроструктура твердых строительных материалов может быть: зернистой (рыхлозернистой или конгломератной); ячеистой (мелкопористой); волокнистой; слоистой. Рыхлозернистые материалы состоят из отдельных, не связанных одно с другим зерен (песок, гравий, порошкообразные материалы для мастичной теплоизоляции и засыпок и др.). Конгломератное строение, когда зерна прочно соединены между собой, характерно для различных видов бетона, некоторых видов природных и керамических материалов и др. Ячеистая (мелкопористая) структура характеризуется наличием макро- и микропор, свойственных газо- и пенобетонам, ячеистым пластмассам, некоторым керамическим материалам. Волокнистые и слоистые материалы, у которых волокна (слои) расположены параллельно одно другому, обладают различными свойствами вдоль и поперек волокон (слоев). Это явление называется анизотропией, а материалы, обладающие такими свойствами, — анизотропными. Волокнистая структура присуща древесине, изделиям из минеральной ваты, а слоистая — рулонным, листовым, плитным материалам со слоистым наполнителем (текстолит, бумопласт и др.). По взаимному расположению атомов и молекул материалы могут, быть кристаллическими иаморфными. Неодинаковое строение кристаллических и аморфных веществ определяет и различия в их свойствах. Аморфные вещества, обладая нерастраченной внутренней энергией кристаллизации, химически более активны, чем кристаллические такого же состава (например, аморфные формы кремнезема — пемзы, туфы, трепелы, диатомиты и кристаллический кварц). Существенное различие между аморфными и кристаллическими веществами состоит в том, что кристаллические вещества при нагревании имеют определенную температуру плавления (при постоянном давлении), а аморфные размягчаются и постепенно переходят в жидкое состояние. Прочность аморфных веществ, как правило, ниже кристаллических, поэтому для получения материалов повышенной прочности специально проводят кристаллизацию, например стекол при получении стеклокристаллических материалов — ситаллов и шлакоситаллов. Неодинаковые свойства могут наблюдаться у кристаллических материалов одного и того же состава, если они формируются в разных кристаллических формах, называемых модификациями (явление полиморфизма). Например, полиморфные превращения кварца сопровождаются изменением объема. Изменением свойств материала путем изменения кристаллической решетки пользуются при термической обработке металлов (закалке или отпуске). Требования, предъявляемые к современным строительным материалам. *Прочность. *Долговечность, морозостойкость, коррозионностойкость, выносливость, трещенностойкость. *Конструктивные качества ККК-R(прочность)/ρ(плотность)(10^3 см) *ККК - характеризует длину нити в сантиметрах имеющую единичное поперечное сечение и при которой она разрушится под действием собственной массы. *Энергосберегающие(ресурсы). *Эстетичность.
|
||||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 4880; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.239.25 (0.012 с.) |