Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
О чем может поведать бронзовая статуэткаСодержание книги
Поиск на нашем сайте
С конца 70-х годов ХХ века в районе Верин Навер, расположенном к западу от Еревана, столицы Армении, проходят раскопки древних гробниц бронзового века. Руководит работами известный армянский историк Акоп Симонян. Осенью 2011 года были завершены раскопки самой большой гробницы. Грабители прошлых веков унесли самые массивные драгоценности, но много артефактов все-таки осталось, и они дали археологам немало информации о древней истории этого региона. Еще в 1978 году Акоп Симонян нашел здесь небольшую бронзовую фигурку птицы, стоящей на подставке. Статуэтка была отлита неведомыми мастерами более трех тысяч лет назад – археологи отнесли ее к XV веку до нашей эры. Ученые попытались взять частицы металла статуэтки на анализ. Каково же было их удивление, когда перед древним материалом оказалось бессильно сверло из победита – твердого металлокерамического композитного сплава карбида вольфрама и кобальта. Победитовые наконечники крепятся к сверлу медной пайкой. От трения медь расплавилась, и наконечники слетели, а на птичке даже следов не осталось. Испортив таким образом два сверла, исследователи бросили свое бессмысленное занятие. Никто из них, естественно, не стал поднимать шум о каких-либо «внеземных технологиях». Птичку просто сдали в Государственный исторический музей Армении в Ереване, где она и хранится ныне. Рис. 167. Бронзовая птичка из Ереванского музея В ноябре 2012 года в музей прибыла группа специалистов из Японии, которая с помощью рентгенофлуоресцентного оборудования провела анализ металла на поверхности статуэтки птицы. Замеры были сделаны в трех разных местах – вверху, посередине статуэтки и на подставке. Анализ подтвердил, что статуэтка сделана из бронзы. Но почему тогда раньше с ней не справились два победитовых сверла?.. С помощью знакомых в Ереване (Армен Петросян) и Санкт-Петербурге (Сергей Дигонский) мне удалось переправить результаты анализа (см. Рис. 168) в Санкт-Петербург для консультации со специалистом по металлам на Ижорском заводе. Специалист высказал сожаление, что проведен лишь поверхностный анализ, так как для окончательного вывода необходимо проанализировать образцы металла из глубины статуэтки. И выдал следующее заключение:
«По моему мнению, трудность обрабатываемости резанием возникла в результате длительного естественного старения. Изменилось структурное состояние сплава, появились различия по химическому составу по микрообластям (размер микрообластей порядка 10-100 нанометров), появились твердые фазы» (А.Кольба). Действительно, с течением времени под воздействием различных факторов во внешнем слое металла происходят изменения. И при определенных условиях в поверхностном слое изделия изменяется структура и химический состав металла – говоря простым языком, изделие как будто покрывается твердой коркой. Сенсации вроде бы не состоялось. И можно было бы просто не упоминать здесь о ереванской птичке. Но… Рис. 168. Результаты анализа химического состава поверхностного слоя ереванской птички Дело в том, что среди разных методов, используемых при работе с бронзой, имеется такой, который носит название «искусственное старение металла». Метод, применяемый, между прочим, очень широко. «На практике для повышения твердости и прочности бронз применяют искусственное старение при температуре около 350оС от нескольких часов до нескольких десятков часов. Некоторые алюминиевые сплавы подвергают естественному старению – вылеживанию изделий от нескольких десятков дней до нескольких лет для повышения прочности. Атомы легирующих элементов, принудительно рассеянные в металлической основе (в твердом растворе), при определенных воздействиях (например, температурно-временных) способствуют образованию «предфаз» («стяжек» атомов), блокирующих движение дислокаций (водорода); поэтому повышается прочность сплава за счет блокировки процессов скольжения в кристаллической решетке при пластической деформации, твердость сплава увеличивается, а пластичность уменьшается» (А.Кольба). В настоящее время искусственное старение широко применяется, например, для бериллиевых бронз. Растворимость бериллия в меди с понижением температуры значительно уменьшается. Это явление используют для получения высоких упругих и прочностных свойств изделий методом дисперсионного твердения. Готовые изделия из бериллиевых бронз подвергают закалке от 800oС, благодаря чему фиксируется пересыщенный твердый раствор бериллия в меди. Затем проводят искусственное старение при температуре 300-350oС. При этом происходит выделение дисперсных частиц, возрастают прочность и упругость. После такого искусственного старения предел прочности изделия значительно увеличивается.
И вот тут возникает вопрос – а не проделали ли то же самое древние мастера с ереванской птичкой?.. Могли ли они владеть подобной технологией?.. Вопрос не такой простой, как могло бы показаться. Ведь даже если провести анализ металла внутри птички, он мало что может дать для объяснения причин различия состава на поверхности статуэтки и внутри нее. Кто будет ответственен за это различие – древние мастера или время?.. Вопрос скорее всего останется без ответа. Рис. 169. Искусственно состаренная бронза В современных работах по древней металлургии метод искусственного старения бронзы даже не обсуждается. И по умолчанию считается, что ранее мастера им не владели. Однако после долгих поисков мне все-таки удалось найти ссылку на описания некоего Боллерта, который сообщал, что жители Новой Гранады «закаляли» свою «медь» путем «капания на нее соком растения и затем помещая ее в огонь, где она приобретала золотой цвет». Новая Гранада – это испанское вице-королевство в Южной Америке, включавшее в себя территории современных Колумбии, Венесуэлы, Панамы и Эквадора. Оно просуществовало с 1718 по 1821 год. Ранее уже говорилось, что испанские хронисты часто путали понятия «медь» и «бронза», а местные индейцы выплавляли преимущественно мышьяковистую бронзу. Так что получается, что индейцам севера Южной Америки была знакома технология, которая вполне может оказаться как раз одним из способов искусственного старения бронзы. А раз металлургические технологии Нового и Старого Света очень схожи между собой, то мастера, создавшие ереванскую птичку, также вполне могли владеть методом искусственного старения, придавая своим бронзовым изделиям дополнительную твердость и прочность. И эту технологию им также могли передать вместе со всем металлургическим знанием древние боги, которым данный метод, уж наверняка, был известен. Еще немного о никеле Особенное положение трехкомпонентных (медь-мышьяк-никель) бронз в Тиауанако и Анатолийско-Иранском очаге древней металлургии заставляет задуматься о причинах такого повышенного интереса древних богов к никелю. Почему отдавалось предпочтение легированию именно этим металлом?.. Ведь в качестве добавок, как было показано выше, можно использовать самые разные металлы. Тем более, что добыча никеля связана с целым рядом сложностей, которые обуславливают его высокую стоимость даже в наше время. Может за этим интересом богов к никелю кроется еще что-то?.. Оказывается, что у никеля есть целый ряд уникальных свойств. Одна из них – генерирование ультразвука. Дело в том, что у никелевых стержней наблюдается так называемый магнитострикционный эффект – под действием переменного электромагнитного поля эти стержни непрерывно сжимаются и растягиваются, становясь, таким образом, источником акустических колебаний. Долгое время никелевый стержень был монополистом в магнитострикционных генераторах. Однако сейчас он сам создал себе конкурента. Это никоси – сплав, состоящий примерно из 94% никеля, 4% кобальта и 2% кремния. Никоси превосходит никель по важнейшим показателям: он чуть ли не в полтора раза лучше преобразует электромагнитную энергию в звуковую, обладает значительно меньшими потерями и большей прочностью. И все-таки в этом сплаве никель является главной составляющей…
Рис. 170. Никелевые стержни Эта связь никеля с генерацией ультразвука представляется важной сразу по двум причинам. Причем обе они связаны с так называемым мегалитическим строительством, характерным для цивилизации богов. Во-первых, в настоящее время в ходе обсуждения различных возможных способов обработки таких твердых пород камня, как гранит и базальт, все чаще звучит идея использования ультразвука. Дело в том, что высокочастотные ультразвуковые колебания способны уменьшать твердость кварца – основной составляющей этих природных магматических пород. Уменьшение твердости кварца серьезно упрощает процесс обработки таких минералов. А значительная часть мегалитических сооружений создана именно из базальта и гранита. Во-вторых, в древних легендах и преданиях самых разных народов можно встретить утверждение, что огромные камни перемещались «с помощью звука», который либо издавали жрецы-строители, либо производил некий «музыкальный инструмент». С помощью такого «звука», дескать, камень терял свой вес и мог даже перелетать по воздуху. Это можно было бы посчитать полной выдумкой наших далеких предков, если бы нам не был уже знаком такой термин как «акустическая левитация». Этот термин обозначает антигравитационное воздействие на предметы со стороны ультразвука. Мы уже умеем с помощью этой технологии «подвешивать» в воздухе мелкие предметы. Например, капли жидкости (см. Рис. 171). Рис. 171. Капли жидкости, левитирующие под воздействием ультразвука Конечно, между акустической левитацией маленьких капель жидкости и перемещением по воздуху больших каменных блоков с помощью звука – громадная пропасть. Однако когда-то мы ведь начинали с фокусов с эбонитовой палочкой, а ныне строим атомные электростанции. Любая технология должна пройти массу промежуточных этапов развития прежде, чем с ее помощью можно будет достигать каких-нибудь весомых результатов. Так и с акустической левитацией, которая тоже должна пройти немалый путь, чтобы стать повседневной технологией – возможно, и в перемещении объектов с большой массой. Так что не исключено, что особый интерес богов к никелю действительно имел место. И не исключено, что они использовали этот металл и его сплавы в своих генераторах ультразвука. Или в каких-то еще неизвестных нам технологиях…
Материал инструментов богов Столкнувшись в наших экспедициях с примерами использования цивилизацией богов очень высоких технологий обработки камня, мы неизбежно на определенном этапе вышли на задачу поиска тех материалов, из которых были сделаны инструменты, позволявшие резать очень твердые породы (типа гранита, базальта, диорита и других) так, как будто это был пенопласт или мягкое дерево. Идея тут была проста. Любой инструмент при обработке (особенно твердых пород) камня неизбежно стачивается. При этом какие-то небольшие частицы материала инструмента могут застревать в мелких неровностях обрабатываемой поверхности, образуя там микровкрапления. И определение материала «божественных» инструментов сводится к довольно, казалось бы, простой задаче – обнаружить чужеродные микровкрапления на обработанной поверхности тех древних артефактов, которые имеют признаки использования высоких технологий при их создании. С этой целью мы начали, где это было возможно, сбор образцов с таких обработанных поверхностей для дальнейшего анализа. Довольно быстро удалось установить, что чужеродные микровкрапления действительно сохраняются даже на весьма древних объектах. Но первоначально сказалось давление стереотипов, связанных с принятой картиной эволюции освоения металлов человеком, и то, что содержало медь, считалось нами признаком использования примитивных инструментов. Однако уже даже на этом этапе начали появляться определенные странности. Рис. 172. Пол храма возле пирамиды Джедкара Так, скажем, в Южной Саккаре находится пирамида фараона V династии Джедкара, с восточной стороны которой располагался припирамидный храм. Хотя храм создан из известняка – материала, довольно легкого в обработке, пол храма привлекает внимание своей необычностью. Возникает полное впечатление, что блоки пола храма сначала сложили рядом, а потом на весьма внушительной площади выровняли его, просто срезав верхний слой почти на десять сантиметров так, как мы циклюем деревянный паркет (см. Рис. 172). Для того, чтобы осуществить подобное с наблюдаемой точностью выравнивания, требуется весьма нетривиальное оборудование. Вдобавок, сама пирамида имеет мощное мегалитическое внутреннее ядро, которое лишь было достроено фараоном до пирамиды. Так что у нас были все основания заподозрить тут причастность древних богов к созданию сооружения под названием «храм» – в частности, и к выравниванию пола этого храма. Анализ образца с этого пола показал наличие частиц сплава, близкого по составу к современной латуни. Считается, что латунь была известна еще древним римлянам, которые получали ее плавлением медной руды с добавлением галмея (цинковая руда). Однако Джедкар правил Египтом аж за две тысячи лет до римлян!.. В последнее время, правда, появилось утверждение, что латунь была известна металлургам в Древнем Иране, но оно не подкрепляется никакими конкретными данными. Однако и в этом случае речь идет о времени существенно позже фараона Джедкара.
Как бы то ни было, этот результат угодил в архив странностей, в который мы складывали все результаты, где проявлялась медь, но в каких-то неожиданных сочетаниях. При работе же над материалом данной книги стало понятно, что необходимо пересматривать подход и анализировать и те частицы, куда входит медь. Тут архив и пригодился. Рис. 173. Обломки кварцитового саркофага в Дашуре В частности, в этот архив сначала попали результаты анализов образцов кварцитового саркофага, на обломки которого мы наткнулись прямо в пустыне возле пирамиды фараона XII династии Сехемхета II в Дашуре (см. Рис. 173). Обломки явно не представляли никакого интереса для египтологов, постоянно имеющих дело с целыми саркофагами, так что они их просто оставили там, где нашли. А нам сразу бросились в глаза трехгранные внутренние углы, выполненные в твердом кварците с безукоризненной точностью. На наших камнеобрабатывающих комбинатах изготовить такие углы не могут – после всего имеющегося оборудования в углу остались бы весьма заметные закругления. А здесь – как будто дополнительно поработал ювелир с очень маленьким сверлом, сняв материал так, что никаких закруглений не осталось. Специалисты по лазерной технике сказали нам, что подобное в принципе можно было бы сделать лазером. Хотя для этого, по энергетике, потребовалось бы оборудование, занимающее по размерам комнату внушительных размеров. Но любой лазер должен был бы оставить после себя следы оплавления, заметные хотя бы на микроуровне. Однако осмотр образцов под микроскопом не выявил никаких признаков оплавления. Форма же кристаллов кварца определенно указывает на то, что здесь применялась механическая обработка каким-то твердым инструментом, двигавшемся на большой скорости. Анализ микровкраплений на поверхности саркофага показал, что медь в них не была чистой, а содержала в виде примесей мышьяк, железо, никель и олово. При этом попадались и частицы сплава железа с титаном… Рис. 174. Микрочастицы инструмента на поверхности кварцитового саркофага Рис. 116. Прорезь на гранитных воротах в Карнаке
Поверхность декоративной прорези на гранитных воротах в Карнаке (см. Рис. 116), как оказалось, содержит много частиц, в состав которых входит железо, медь, никель и олово (порядок металлов указан в соответствии с уменьшением примерного содержания элементов в микровкраплениях). Попадаются также частицы железо-титан-марганец-кремний. Геолог Юлия Горлова, проводившая лабораторные исследования образцов, высказала предположение, что основной материал инструмента состоял из медьсодержащего сплава, но при этом использовался твердый абразив (Fe-Ti-Mn). Подобный подход практикуется в современных инструментах, когда твердый абразив наносится на более мягкую металлическую связку, которая обычно изготавливается из сплавов на основе меди, олова, железа, алюминия и других металлов. Но это пока так остается на уровне предположения, поскольку при использовавшихся в анализе методах электронной микроскопии невозможно сделать более однозначные выводы… Весьма любопытные результаты дали анализы образцов с мегалита под названием Масуда-Ивафун, находящегося в парке Асука в Японии. Это – странная асимметричная «ванна» весом около 800 тонн, издали похожая на потерянный или брошенный какими-то гигантами валун серого гранита (см. Рис. 175). Его габариты по направлению восток–запад – около 11 метров; по направлению север–юг – около 8 метров; высота – около 5 метров. Историки датируют его довольно поздним временем – чуть более тысячи лет назад, но делают это безо всяких на то оснований. Абсолютно никаких упоминаний о времени его изготовлении ни в каких источниках нет. Здесь обнаружены не только частицы железа с примесями титана и ванадия, но и частица сплава медь-железо-никель-кобальт. Подчеркну, что речь идет именно о сплаве, содержащем указанные элементы, а не просто о какой-то частице, которая могла бы оказаться лишь механической смесью указанных элементов. И если частицу железа с примесями титана и ванадия еще можно было бы списать на материал обычного железного инструмента, который уже использовался в Японии в I тысячелетии нашей эры, то сплав медь-железо-никель-кобальт заведомо не имеет никакого отношения к японскому обществу того времени и указывает на очень высоко развитые технологии. Особо показательно наличие в сплаве кобальта, поскольку ныне около 80% добычи этого металла расходуется на создание сверхтвердых, жаропрочных, инструментальных и износостойких сплавов. Эти сплавы находят применение в машиностроении, в авиационной технике, ракетостроении, электротехнической и атомной промышленности. Рис. 175. Масуда-Ивафун К сожалению, очень малый размер микровкраплений позволяет получать пока лишь качественный результат. Но мы не теряем надежды подобрать методику, с помощью которой можно было бы определить и количественный состав частиц подобного размера. Тогда можно было бы попробовать воспроизвести соответствующие сплавы и исследовать их свойства. Однако пока это лишь планы на будущее…
|
|||||||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 550; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.22.42.25 (0.013 с.) |